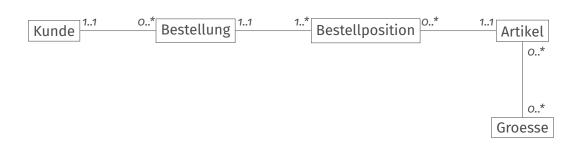
WIRTSCHAFTSINFORMATIK 1

DATENBANKEN - AGGREGATFUNKTIONEN UND GRUPPIERUNG

PROF. DR. CHRISTIAN BOCKERMANN, PROF. DR. VOLKER KLINGSPOR

HOCHSCHULE BOCHUM

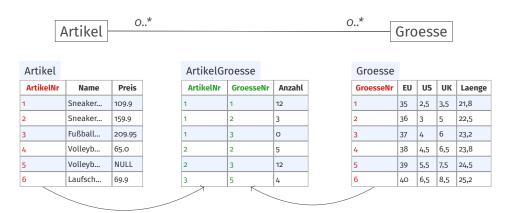
WINTERSEMESTER 2025/2026


INHALT

Inhalt

- Wiederholung
- Betrachtungen zum Modell
- 3 Aggregatfunktionen in SQL
- 4 Gruppierung
- 5 Weitere SQL-Befehle
- 6 Zusammenfassung und Ausblick

Modell aus der Vorlesung



Modell aus der Übung

N:M-BEZIEHUNGEN – AUFLÖSUNG MIT VERBINDUNGSTABELL Gebun Dinkersity

- Wir erstellen eine (Verbindungstabelle).
- Die Tabelle enthält die Primärschlüssel der Grundtabellen als Fremdschlüssel.

n:m-Beziehungen – Auflösung mit Verbindungstabell

ArtikalGrancea

Artikel		
ArtikelNr	Name	Preis
1	Sneaker	109.9
2	Sneaker	159.9
3	Fußball	209.95
4	Volleyb	65.0
5	Volleyb	NULL
6	Laufsch	69.9

Altikeldidesse							
ArtikelNr	GroesseNr	Anzahl					
1	1	12					
1	2	3					
1	3	0					
2	2	5					
2	3	12					
3	5	4					

Groesse				
GroesseNr	EU	US	UK	Laenge
1	35	2,5	3,5	21,8
2	36	3	5	22,5
3	37	4	6	23,2
4	38	4,5	6,5	23,8
5	39	5,5	7,5	24,5
6	40	6,5	8,5	25,2

- Wir erstellen eine (Verbindungstabelle).
- Die Tabelle enthält die Primärschlüssel der Grundtabellen als Fremdschlüssel.
- Diese Fremdschlüssel sind gleichzeitig der zusammengesetzte Primärschlüssel der neuen Tabelle.
- Die Verbindungstabelle darf weitere Attribute enthalten.

Suche über Verbindungstabellen

Artikel

ArtikelNr	Name	Preis
1	Sneaker	109.9
2	Sneaker	159.9
3	Fußball	209.95
4	Volleyb	65.0
5	Volleyb	NULL
6	Laufsch	69.9

ArtikelGroesse

ArtikelNr	GroesseNr	Anzahl
1	1	12
2	2	5
1	2	3
1	3	О
2	3	12
3	5	4

Groesse

GroesseNr	EU	US	UK	Laenge
1	35	2,5	3,5	21,8
2	36	3	5	22,5
3	37	4	6	23,2
4	38	4,5	6,5	23,8
5	39	5,5	7,5	24,5
6	40	6,5	8,5	25,2

```
Select * from Artikel
join ArtikelGroesse on (Artikel.ArtikelNr = ArtikelGroesse.ArtikelNr)
join Groesse on (ArtikelGroesse.GroesseNr = Groesse.GroesseNr)
```

ArtikelNr	Name	Preis	ArtikelNr	GroesseNr	Anzahl	GroesseNr	EU	US	UK	Laenge
1	Sneaker Gazelle	109.9	1	1	12	1	35	2,5	3,5	21,8
2	Sneaker Stan Smith	159.9	2	2	5	2	36	3	5	22,5
1	Sneaker Gazelle	109.9	1	2	3	2	36	3	5	22,5
1	Sneaker Gazelle	109.9	1	3	О	3	37	4	6	23,2
2	Sneaker Stan Smith	159.9	2	3	12	3	37	4	6	23,2
3	Fußballschuh King Ultimate	209.95	3	5	4	5	39	5,5	7,5	24,5

Was ist der Nettopreis der Artikel?

Select Name, Preis, Preis / 1.19 as Nettopreis from Artikel

Name	Preis	Nettopreis
Sneaker Gazelle	109.9	92.3529411764706
Sneaker Stan Smith	159.9	134.36974789915968
Fußballschuh King Ultimate	209.95	176.42857142857142
Volleyballschuhe Upcourt 5	65.0	54.6218487394958
Volleyballschuhe Gel-Furtherup Da-	NULL	NULL
men Laufschuh Electrify Nitro 2 Herren	69.9	58.73949579831933

Wie ist der Gesamtpreis jedes Artikels in den Bestellungen?

```
Select *, Bestellposition.Anzahl * Artikel.Preis As Gesamtpreis
from Bestellposition
join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr)
```

BestellpositionNr	BestellungNr	ArtikelNr	Anzahl	ArtikelNr	Name	Preis	Gesamtpreis
1	1	1	2	1	Sneaker Gazelle	109.9	219.8
2	1	2	1	2	Sneaker Stan Smith	159.9	159.9
3	2	3	1	3	Fußballschuh King Ultimate	209.95	209.95
4	3	3	2	3	Fußballschuh King Ultimate	209.95	419.9
5	4	4	3	4	Volleyballschuhe Upcourt 5	65.0	195.0
6	5	4	1	4	Volleyballschuhe Upcourt 5	65.0	65.0

Betrachtungen zum Modell

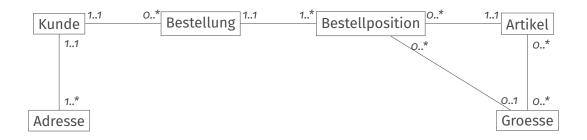
MODELL VOLLSTÄNDIG?

• Wird die Größe der bestellten Artikel gespeichert?

MODELL VOLLSTÄNDIG?

- Wird die Größe der bestellten Artikel gespeichert?
- Was passiert mit den Bestellungen, wenn sich Artikelpreise ändern?

MODELL VOLLSTÄNDIG?


- Wird die Größe der bestellten Artikel gespeichert?
- Was passiert mit den Bestellungen, wenn sich Artikelpreise ändern?
- Haben Kunden nur eine Adresse und was passiert mit den Bestellungen, wenn Kunden umziehen?

ERWEITERTES MODELL

• Speicherung der Größe einer Bestellposition als neue Beziehung

- Speicherung der Größe einer Bestellposition als neue Beziehung
- Speichern der Adresse als eigene Entität mit Beziehung zum Kunden

- Speicherung der Größe einer Bestellposition als neue Beziehung
- Speichern der Adresse als eigene Entität mit Beziehung zum Kunden
- Speichern aller zum Bestellzeitpunkts gültigen Daten (z.B. Preis und Liefer-/Rechnungsadresse) in der Bestellung (im Modell nicht sichtbar)

Aggregatfunktionen in SQL

MOTIVATION

Was können wir mit SQL bisher?

- Suche über verschiedene Tabellen
- Berechnung neuer Attribute basierend auf den Wert der aktuelle Zeile

Hochschule Bochum **Bochum University** of Applied Sciences

Warenkorb: 3 Artikel, 672,00 €

Warenkorb

Warenkorb

Position	Artikel	Anzahl	Beschreibung	Einzelpreis	Preis	
1	1	2	Nike SB Dunk Low April Skateboards	186,00 €	372,00 €	Х
2	2	1	Pharrell x NMD_S1 Mahbs 'Earth Strata'	300,00 €	300,00 €	Х
				Gesamt:	672,00 €	

Zur Bestellung

Shop-Daten

Hochschule Bochum **Bochum University** of Applied Sciences

Warenkorb: 3 Artikel, 672,00 €

Warenkorb

Warenkorb

Zur Bestellung

Position	Artikel	Anzahl	Beschreibung	Einzelpreis	Preis	
1	1	2	Nike SB Dunk Low April Skateboards	186,00 €	372,00 €	Х
2	2	1	Pharrell x NMD_S1 Mahbs 'Earth Strata'	300,00 €	300,00€	Х
				Gesamt:	672,00 €	

Select Anzahl * Preis

Shop-Daten

Hochschule Bochum **Bochum University** of Applied Sciences

Warenkorb: 3 Artikel, 672,00 €

Warenkorb

Warenkorb

Position	Artikel	Anzahl	Beschreibung	Einzelpreis	Preis	
1	1	2	Nike SB Dunk Low April Skateboards	186,00 €	372,00 €	Х
2	2	1	Pharrell x NMD_S1 Mahbs 'Earth Strata'	300,00 €	300,00€	Х
				Gesamt:	672,00 €	

Zur Bestellung

Select?

Shop-Daten

Es fehlt:

- Aggregation von Daten mehrerer Zeilen
- Beispiel: Berechne den Gesamtpreis einer Bestellung!

Zunächst: Aggregatfunktionen in der Tabelle Artikel

ArtikelNr	Name	Preis
1	Sneaker Gazelle	109.9
2	Sneaker Stan Smith	159.9
3	Fußballschuh King Ultimate	209.95
4	Volleyballschuhe Upcourt 5	65.0
5	Volleyballschuhe Gel-Furtherup Damen	NULL
6	Laufschuh Electrify Nitro 2 Herren	69.9

Bestimme den niedrigsten, den höchsten und den durchschnittlichen Preis sowie die Summe aller Preise

Select min(Preis), max(Preis), avg(Preis), sum(Preis) from Artikel

	min(Preis)	max(Preis)	avg(Preis)	sum(Preis)
e	55.0	209.95	122.9299999999999	614.65

ArtikelNr	Name	Preis
1	Sneaker Gazelle	109.9
2	Sneaker Stan Smith	159.9
3	Fußballschuh King Ultimate	209.95
4	Volleyballschuhe Upcourt 5	65.0
5	Volleyballschuhe Gel-Furtherup Damen	NULL
6	Laufschuh Electrify Nitro 2 Herren	69.9

Wie viele Artikel habe ich?

Wie viele unterschiedliche Preise habe die Artikel?

Wie viele Artikel haben einen Preis?

Select count(*), count(distinct Preis), count(Preis) from Artikel

count(*)	count(distinct Preis)	count(Preis)
6	5	5

Wie ist der Gesamtpreis der Bestellung Nr. 1?

Bestellung

BestellungNr	Datum	KundeNr
1	2022-02-12	1
2	2022-03-28	2
3	2022-05-12	3
4	2022-08-01	1
5	2022-09-01	3

Bestellposition

BestellpositionNr	BestellungNr	ArtikelNr	Anzahl
1	1	1	2
2	1	2	1
3	2	3	1
4	3	3	2
5	4	4	3
6	5	4	1

Artikel

ArtikelNr	Name	Preis
1	Sneaker	109.9
2	Sneaker	159.9
3	Fußball	209.95
4	Volleyb	65.0
5	Volleyb	NULL
6	Laufsch	69.9

GESAMTPREIS EINER BESTELLUNG

Wie ist der Gesamtpreis der Bestellung Nr. 1?

Bestellung

BestellungNr	Datum	KundeNr
1	2022-02-12	1
2	2022-03-28	2
3	2022-05-12	3
4	2022-08-01	1
5	2022-09-01	3

Bestellposition

-			
BestellpositionNr	BestellungNr	ArtikelNr	Anzahl
1	1	1	2
2	1	2	1
3	2	3	1
4	3	3	2
5	4	4	3
6	5	4	1

Artikel

ArtikelNr	Name	Preis
1	Sneaker	109.9
2	Sneaker	159.9
3	Fußball	209.95
4	Volleyb	65.0
5	Volleyb	NULL
6	Laufsch	69.9

Die Tabelle Bestellung wird nicht benötigt!

Wie ist der Gesamtpreis der Bestellung Nr. 1?

Bestellposition

BestellpositionNr	BestellungNr	ArtikelNr	Anzahl
1	1	1	2
2	1	2	1
3	2	3	1
4	3	3	2
5	4	4	3
6	5	4	1

Artikel

7 11 011101		
ArtikelNr	Name	Preis
1	Sneaker	109.9
2	Sneaker	159.9
3	Fußball	209.95
4	Volleyb	65.0
5	Volleyb	NULL
6	Laufsch	69.9

Zunächst: Welche Artikel sind in der Bestellung mit der Nr. 1?

Select * from
Bestellposition join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr)
where Bestellposition.BestellungNr = 1

BestellpositionNr	BestellungNr	ArtikelNr	Anzahl ArtikelNr		Name	Preis
1	1	1	2	1	Sneaker Gazelle	109.9
2	1	2	1	2	Sneaker Stan Smith	159.9

GESAMTPREIS EINER BESTELLUNG 2


```
Select * from
Bestellposition join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr)
where Bestellposition.BestellungNr = 1
```

BestellpositionNr	BestellungNr	ArtikelNr	Anzahl	ArtikelNr	Name	Preis
1	1	1	2	1	Sneaker Gazelle	109.9
2	1	2	1	2	Sneaker Stan Smith	159.9

Wie ist der Gesamtpreis der Bestellung Nr. 1?

(Anzahl * Preis) berechnen und das Produkt aufsummieren

GESAMTPREIS EINER BESTELLUNG 2


```
Select * from
Bestellposition join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr)
where Bestellposition.BestellungNr = 1
```

BestellpositionNr	BestellungNr	ArtikelNr	Anzahl ArtikelNr		Name	Preis
1	1	1	2	1	Sneaker Gazelle	109.9
2	1	2	1	2	Sneaker Stan Smith	159.9

Wie ist der Gesamtpreis der Bestellung Nr. 1?

(Anzahl * Preis) berechnen und das Produkt aufsummieren

```
Select sum(Bestellposition.Anzahl * Artikel.Preis)
from Bestellposition join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr)
where Bestellposition.BestellungNr = 1
```

```
sum(Bestellposition.Anzahl * Artikel.Preis)
379.700000000000005
```

ZUSAMMENFASSUNG AGGREGATFUNKTIONEN

Aggregatfunktionen

- berechnen einer Wert über alle gefundenen Datensätze/Tupel
- liefern als Ergebnis nur ein Tupel zurück
- können die Anzahl, das Minimum und Maximum, den Durchschnitt und die Summe einer Spalte (oder eines mathematischen Ausdrucks) berechnen

Gruppierung

ANZAHL KUNDEN FÜR ALLE ORTE

Kunde					
KundeNr	Nachname	Vorname	PLZ	Ort	Strasse
1	Müller	Werner	44789	Bochum	Wittener Str. 79
2	Thomas	Walter	36272	Niederaula	Lerchenweg 13b
3	Maier	Ella	53347	Alfter	Amselweg 28
4	Schmidt	Ulrike	53347	Alfter	Höhenweg 3
5	Meyer	Klaus	44801	Bochum	Wittener Str. 101
6	Maier	Heike	44789	Bochum	Wittener Str. 79

• Wie können wir die Anzahl der Kunden in den jeweiligen Orten berechnen?

Select count(*) from Kunde where Ort = 'Bochum'

count(*)

Select count(*) from Kunde where Ort = 'Niederaula'

count(*)

Select count(*) from Kunde where Ort = 'Alfter'

count(*)

KundeNr	Nachname	Vorname	PLZ	Ort	Strasse
3	Maier	Ella	53347	Alfter	Amselweg 28
4	Schmidt Ulrike		53347	Alfter	Höhenweg 3
1	Müller Wer		44789	Bochum	Wittener Str. 79
5	Meyer Kl		44801	Bochum	Wittener Str. 101
6	Maier	Heike	44789	Bochum	Wittener Str. 79
2	Thomas	Walter	36272	Niederaula	Lerchenweg 13b

Select Ort, count(*) from Kunde group by Ort

KundeNr	Nachname	Vorname	PLZ	Ort	Strasse
3	Maier	Ella	53347	Alfter	Amselweg 28
4	Schmidt	Ulrike	53347	Alfter	Höhenweg 3
1	Müller	Werner	44789	Bochum	Wittener Str. 79
5	Meyer	Klaus	44801	Bochum	Wittener Str. 101
6	Maier	Heike	44789	Bochum	Wittener Str. 79
2	Thomas	Walter	36272	Niederaula	Lerchenweg 13b

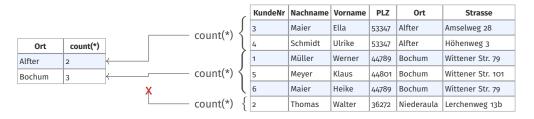
Select Ort, count(*) from Kunde group by Ort

• group by fasst alle Tupel mit demselben Attributwert zu einer Teilmenge zusammen.

(KundeNr	Nachname	Vorname	PLZ	Ort	Strasse
saunt(*)	3	Maier	Ella	53347	Alfter	Amselweg 28
count(*) {	4	Schmidt	Ulrike	53347	Alfter	Höhenweg 3
	1	Müller	Werner	44789	Bochum	Wittener Str. 79
count(*)	5	Meyer	Klaus	44801	Bochum	Wittener Str. 101
(6	Maier	Heike	44789	Bochum	Wittener Str. 79
count(*) {	2	Thomas	Walter	36272	Niederaula	Lerchenweg 13b

Select Ort, count(*) from Kunde group by Ort

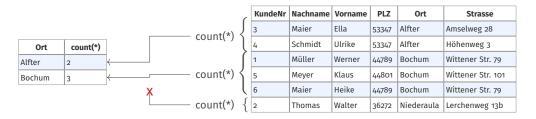
- group by fasst alle Tupel mit demselben Attributwert zu einer Teilmenge zusammen.
- Die Aggregatfunktion wird dann auf jede Teilmenge getrennt angewendet.



					KundeNr	Nachname	Vorname	PLZ	Ort	Strasse
				count(*)	3	Maier	Ella	53347	Alfter	Amselweg 28
Ort	count(*)			— count(")	4	Schmidt	Ulrike	53347	Alfter	Höhenweg 3
Alfter	2			(1	Müller	Werner	44789	Bochum	Wittener Str. 79
Bochum	3	-		count(*)	5	Meyer	Klaus	44801	Bochum	Wittener Str. 101
Niederaula	1	·	1	(6	Maier	Heike	44789	Bochum	Wittener Str. 79
		J		count(*) {	2	Thomas	Walter	36272	Niederaula	Lerchenweg 13b

Select Ort, count(*) from Kunde group by Ort

- group by fasst alle Tupel mit demselben Attributwert zu einer Teilmenge zusammen.
- Die Aggregatfunktion wird dann auf jede Teilmenge getrennt angewendet.
- Das Attribut, nach dem gruppiert wird, kann mit ausgegeben werden.


GRUPPIERUNG ÜBER DIE ORTE MIT AUSWAHL

Select Ort, count(*) from Kunde group by Ort having count(*) >= 2

GRUPPIERUNG ÜBER DIE ORTE MIT AUSWAHL

Select Ort, count(*) from Kunde group by Ort having count(*) >= 2

• having filtert *nach* der Aggregation alle Ergebnistupel heraus, die nicht der Bedingung entsprechend.

DER UMSATZ AUS VERSCHIEDENEN PERSPEKTIVEN

Mit dem erlernten SQL-Befehlen können wir den Umsatz des Unternehmens aus verschiedenen Perspektiven betrachten.

- Umsatz der verschiedenen Bestellungen
- Umsatz der verschiedenen Kunden
- Umsatz der verschiedenen Artikel
- Umsatz in den verschiedenen Orten
- Umsatz in den verschiedenen Monaten

DER UMSATZ AUS VERSCHIEDENEN PERSPEKTIVEN

Mit dem erlernten SQL-Befehlen können wir den Umsatz des Unternehmens aus verschiedenen Perspektiven betrachten.

- Umsatz der verschiedenen Bestellungen
- Umsatz der verschiedenen Kunden
- Umsatz der verschiedenen Artikel
- Umsatz in den verschiedenen Orten
- Umsatz in den verschiedenen Monaten
- Die Berechnung des Umsatzes ist dabei immer gleich
- Die Spalte, über die gruppiert wird, verändert sich

DER GESAMTUMSATZ DER BESTELLUNGEN

Bestellungen mit Artikeln

BestellpositionNr	BestellungNr	ArtikelNr	Anzahl	ArtikelNr	Name	Preis
1	1	1	2	1	Sneaker Gazelle	109.9
2	1	2	1	2	Sneaker Stan Smith	159.9
3	2	3	1	3	Fußballschuh King Ultimate	209.95
4	3	3	2	3	Fußballschuh King Ultimate	209.95
5	4	4	3	4	Volleyballschuhe Upcourt 5	65.0
6	5	4	1	4	Volleyballschuhe Upcourt 5	65.0

Select Bestellposition.BestellungNr, sum(Bestellposition.Anzahl * Artikel.Preis) from Bestellposition join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr) group by Bestellposition.BestellungNr

BestellungNr	sum(Bestellposition.Anzahl * Artikel.Preis)
1	379.7000000000005
2	209.95
3	419.9
4	195.0
5	65.0

DER GESAMTUMSATZ DER KUNDEN

Kunden mit ihren Bestellungen und den dazugehörigen Artikeln

KundeNr	Nachname	Vorname	BestellungNr	Datum	KundeNr	BestellpositionNr	BestellungNr	ArtikelNr	Anzahl	ArtikelNr	Preis
1	Müller	Werner	1	2022-02-12	1	1	1	1	2	1	109.9
1	Müller	Werner	1	2022-02-12	1	2	1	2	1	2	159.9
2	Thomas	Walter	2	2022-03-28	2	3	2	3	1	3	209.95
3	Maier	Ella	3	2022-05-12	3	4	3	3	2	3	209.95
1	Müller	Werner	4	2022-08-01	1	5	4	4	3	4	65.0
3	Maier	Ella	5	2022-09-01	3	6	5	4	1	4	65.0

```
Select Kunde.KundeNr, Kunde.Nachname, sum(Bestellposition.Anzahl * Artikel.Preis) from Kunde join Bestellung on (Kunde.KundeNr = Bestellung.KundeNr) join Bestellposition on (Bestellung.BestellungNr = Bestellposition.BestellungNr) join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr) group by Kunde.KundeNr
```

KundeNr	Nachname	sum(Bestellposition.Anzahl * Artikel.Preis)
1	Müller	574.7
2	Thomas	209.95
3	Maier	484.9

DER GESAMTUMSATZ IN DEN ORTEN

Kunden mit ihren Bestellungen und den dazugehörigen Artikeln

KundeNr	Nachname	Vorname	BestellungNr	Datum	KundeNr	BestellpositionNr	BestellungNr	ArtikelNr	Anzahl	ArtikelNr	Preis
1	Müller	Werner	1	2022-02-12	1	1	1	1	2	1	109.9
1	Müller	Werner	1	2022-02-12	1	2	1	2	1	2	159.9
2	Thomas	Walter	2	2022-03-28	2	3	2	3	1	3	209.95
3	Maier	Ella	3	2022-05-12	3	4	3	3	2	3	209.95
1	Müller	Werner	4	2022-08-01	1	5	4	4	3	4	65.0
3	Maier	Ella	5	2022-09-01	3	6	5	4	1	4	65.0

```
Select Kunde.Ort, sum(Bestellposition.Anzahl * Artikel.Preis)
from Kunde join Bestellung on (Kunde.KundeNr = Bestellung.KundeNr)
join Bestellposition on (Bestellung.BestellungNr = Bestellposition.BestellungNr)
join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr)
group by Kunde.Ort
```

Ort sum(Bestellposition.Anzahl * Artikel.Pre				
Alfter	484.9			
Bochum	574.7			
Niederaula	209.95			

DER GESAMTUMSATZ IN DEN MONATEN

Kunden mit ihren Bestellungen und den dazugehörigen Artikeln

KundeNr	Nachname	Vorname	BestellungNr	Datum	KundeNr	BestellpositionNr	BestellungNr	ArtikelNr	Anzahl	ArtikelNr	Preis
1	Müller	Werner	1	2022-02-12	1	1	1	1	2	1	109.9
1	Müller	Werner	1	2022-02-12	1	2	1	2	1	2	159.9
2	Thomas	Walter	2	2022-03-28	2	3	2	3	1	3	209.95
3	Maier	Ella	3	2022-05-12	3	4	3	3	2	3	209.95
1	Müller	Werner	4	2022-08-01	1	5	4	4	3	4	65.0
3	Maier	Ella	5	2022-09-01	3	6	5	4	1	4	65.0

Select Month(Bestellung.Datum) as Monat, sum(Bestellposition.Anzahl * Artikel.Preis) from Kunde join Bestellung on (Kunde.KundeNr = Bestellung.KundeNr) join Bestellposition on (Bestellung.BestellungNr = Bestellposition.BestellungNr) join Artikel on (Bestellposition.ArtikelNr = Artikel.ArtikelNr) group by Monat

Monat	sum(Bestellposition.Anzahl * Artikel.Preis)
02	379.7000000000005
03	209.95
05	419.9
08	195.0
09	65.0

Weitere SQL-Befehle


```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```



```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```

Constraints:

NOT NULL Attibut darf nicht NULL sein


```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```

Constraints:

NOT NULL Attibut darf nicht NULL sein

UNIQUE Attibut muss eindeutig sein (darf nicht mehrfach vorkommen)


```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```

Constraints:

NOT NULL Attibut darf nicht NULL sein

UNIQUE Attibut muss eindeutig sein (darf nicht mehrfach vorkommen)

PRIMARY KEY Kennzeichnet den Primärschlüssel (impliziert NOT NULL und UNIQUE)


```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```

Constraints:

NOT NULL Attibut darf nicht NULL sein

UNIQUE Attibut muss eindeutig sein (darf nicht mehrfach vorkommen)

PRIMARY KEY Kennzeichnet den Primärschlüssel (impliziert NOT NULL und UNIQUE)

FOREIGN KEY Kennzeichnet einen Fremdschlüssel


```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```

Constraints:

NOT NULL Attibut darf nicht NULL sein

UNIQUE Attibut muss eindeutig sein (darf nicht mehrfach vorkommen)

PRIMARY KEY Kennzeichnet den Primärschlüssel (impliziert NOT NULL und UNIQUE)

FOREIGN KEY Kennzeichnet einen Fremdschlüssel

CHECK Erlaubt es, beliebige Bedingungen (z.B. Anzahl >= 1) zu definieren


```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```

Constraints:

NOT NULL Attibut darf nicht NULL sein

UNIQUE Attibut muss eindeutig sein (darf nicht mehrfach vorkommen)

PRIMARY KEY Kennzeichnet den Primärschlüssel (impliziert NOT NULL und UNIQUE)

FOREIGN KEY Kennzeichnet einen Fremdschlüssel

CHECK Erlaubt es, beliebige Bedingungen (z.B. Anzahl >= 1) zu definieren

DEFAULT Definiert einen Standardwert beim Einfügen eines Datensatzes, wenn das Attribut nicht gesetzt wird


```
CREATE TABLE tabellename (
    spalte1 datatype,
    spalte2 datatype,
    ...
);
```

Constraints:

NOT NULL Attibut darf nicht NULL sein

UNIQUE Attibut muss eindeutig sein (darf nicht mehrfach vorkommen)

PRIMARY KEY Kennzeichnet den Primärschlüssel (impliziert NOT NULL und UNIQUE)

FOREIGN KEY Kennzeichnet einen Fremdschlüssel

CHECK Erlaubt es, beliebige Bedingungen (z.B. Anzahl >= 1) zu definieren

DEFAULT Definiert einen Standardwert beim Einfügen eines Datensatzes, wenn das Attribut nicht gesetzt wird

CREATE INDEX Kennzeichnet, dass über das Attribut schnell gesucht werden soll

BEISPIEL FÜR CREATE TABLE


```
CREATE TABLE Bestellposition (
BestellpositionNr INTEGER,
BestellungNr INTEGER,
ArtikelNr INTEGER NOT NULL,
Anzahl INTEGER NOT NULL DEFAULT 1,
PRIMARY KEY (BestellpositionNr AUTOINCREMENT)
FOREIGN KEY (BestellungNr) REFERENCES Bestellung(BestellungNr),
FOREIGN KEY (ArtikelNr) REFERENCES Artikel(ArtikelNr)
)
```

DATEN ÄNDERN


```
UPDATE Tabelle
SET spalte1 = wert1, spalte2 = wert12, ...
WHERE Bedingung;
```

Beispiel:

```
UPDATE Kunde
SET Ort = "Alfter", PLZ = "53347";
```

```
INSERT INTO Tabelle (spalte1, spalte2, spalte3, ...)
VALUES (wert11, wert12, wert13, ...), (wert21, wert22, wert23, ...), ...;
```

Beispiel:

```
INSERT INTO Bestellposition (BestellungNr, ArtikelNr)
VALUES (3, 5), (3, 6);
```

Werte eines Tupels, die nicht durch das INSERT gesetzt werden, werden per AUTO-INCREMENT, mit dem DEFAULT-Wert oder mit NULL belegt.

DATEN LÖSCHEN


```
DELETE FROM Tabelle WHERE Bedingung;
```

Beispiel:

```
DELETE FROM Groesse
WHERE EU="40";
```

Achtung: Wird keine Bedingung angegeben, werden alle Tupel aus der Tabelle gelöscht.

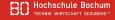
Eine Tutorial mit noch viel mehr Beispielen finden Sie unter https://www.w3schools.com/sql/default.asp

DATENSCHUTZ

Die Zugriffsrechte auf die Daten können detailliert eingestellt werden. Für jeden Benutzer kann für

- alle Datenbanken
- jede einzelne Datenbank
- jede Tabelle
- jede Spalte

festgelegt werden, welche Operationen, insbesondere Lesen und Schreiben, erlaubt sind.


Zusammenfassung und Ausblick

ZUSAMMENFASSUNG

- Detailbetrachtungen im Modell
- Aggregatfunktionen
- Gruppierung
- Tabellen erstellen mit Constraints

AUSBLICK

- Weitere Arten von Beziehungen?
- Wie speichern wir diese in Tabellen?
- Wie sieht die Klausuraufgabe aus?