WIRTSCHAFTSINFORMATIK 1

CODIERUNG

PROF. DR. CHRISTIAN BOCKERMANN, PROF. DR. VOLKER KLINGSPOR

HOCHSCHULE BOCHUM

WINTERSEMESTER 2025/2026

INHALT

Inhalt

- 1 Hardware
- 2 Software
- Speicherorte von Dateien
- 4 Codierung von Daten
- Codierung von Bildern
- Zusammenfassung

Hardware

Welchen Computer sollte ich mir kaufen?

- Bauform (Form Factor)
- Prozessor (CPU)
- Kerne
- Hauptspeicher / RAM
- Festplatte / SSD

FORM FACTOR

Die Bauform beeinflusst den Preis, die Leistungsfähigkeit und die Erweiterungsfähigkeit

- Laptop (Dockingstation)
- Desktop (unterschiedliche Varianten)
- Tablett / Smartphone
- Ein-Platinen-Computer

CPU – Central Processing Unit (Prozessor)

- Führt Anweisungen von Programmen aus
- Eigenschaften:

Takt (GHz): Anzahl der Befehle pro Sekunde

Kerne (Core): Anzahl der gleichzeitig ausführbaren Befehle

Cache (MB): Zwischenspeicher

Arbeitsspeicher / Hauptspeicher (RAM)

- Sehr schneller Speicher für Daten
- Speichert Daten und Programme während des Betriebs des Computers
- Eigenschaften:

Größe (GB): Insbesondere bei Grafik- und Videobearbeitung wichtig **Preis:** Im Vergleich zu Festspeicher sehr teuer!

Festspeicher / Festplatte

- · Festplatte, SSD, NVME
- Speichert Daten und Programme dauerhaft, wiederbeschreibbar
- Eigenschaften:

```
Typ (Festplatte (HD) / SSD)
Größe (GB/TB)
```


Input/Output – I/O (Eingabe- und Ausgabe)

- Sämtliche Ein- und Ausgabegeräte (Peripherie-Geräte)
- Eigenschaften:

Monitor: Auflösung und Größe

HDMI: Schnittstelle für Bild und Ton

USB A: Schnittstelle für externe Geräte (Drucker, Tastatur, ...)

USB C: Schnittstelle für externe Geräte (Drucker, Tastatur, Video, Ton,

Netzwerk, Strom, ...)

Input/Output - I/O (Eingabe- und Ausgabe)

Sämtliche Ein- und Ausgabegeräte (Peripherie-Geräte)

In den Poolräumen können Sie USB-C nutzen, um Monitor/Tastatur/Maus an Ihr Laptop anzuschließen und es gleichzeitig zu laden.

Software

WAS IST SOFTWARE

Programme, die auf der Hardware ausgeführt werden.

- Folge von Anweisungen
- Gespeichert im Arbeitsspeicher (RAM)

Betriebssystem

MS Windows, MacOS, Linux, Android, iOS

Anwendungssoftware

Tabellenkalkulation, Browser, Email-Client, Smartphone-Apps

Software kann lokal oder auf einem Server laufen.

Lokal

- Die Software ist auf Ihrem Computer installiert
- Sie haben die Kontrolle über die Ausführung (Starten, Beenden, Computer ausschalten)
- Die Daten können lokal oder auf einem Server gespeichert werden.

Tabellenkalkulation, Textverarbeitung, ...

MS Excel, MS Word, Thunderbird, ...

Software kann lokal oder auf einem Server laufen.

Server / Cloud

- Die Software wird von einem Unternehmen auf einem Server installiert
- Das Unternehmen hat die Kontrolle über die Ausführung
- Die Daten werden auf dem Server gespeichert.

MS Office 365
Webmail
Social Media Dienste

WO LÄUFT DIE SOFTWARE

Web-Anwendung (im Browser) *und* lokale Anwendung (App)Zugriff auf serverseitig gespeicherte Daten

- Email
- Maps
- Social Media Dienste

TIPP!

Verwenden Sie für die Hochschul-Emails einen Email-Client auf Ihrem Smartphone, damit Sie keine wichtigen Emails verpassen.

- Sie können eine eigene App dafür verwenden, um private Emails davon zu trennen.
- Sie richten lokal ein Email-Konto ein, mit dem Sie auf die Hochschul-Email zugreifen können.
- Anleitung: https: //www.hochschule-bochum.de/cit/anleitungen/studmail-1/

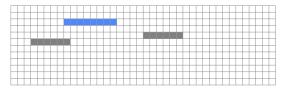
Speicherorte von Dateien

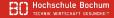
WO WERDEN DATEN GESPEICHERT?

- Lokal auf dem eigenen Computer
- Netzlaufwerke
- Cloud-Dienste

Dateien speichern auf der Festplatte

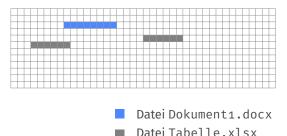
Festplatten speichern Bits z.B.

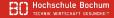

- durch Magnetisierung von winzigen Stellen (Zellen) auf Scheiben
- oder in Zellen von nicht-flüchtigen Chips (SSD)
- jede Zelle hat eine Position/Adresse


Dateien speichern auf der Festplatte

Festplatten speichern Bits z.B.

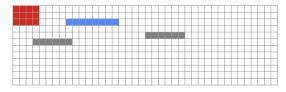
- durch Magnetisierung von winzigen Stellen (Zellen) auf Scheiben
- oder in Zellen von nicht-flüchtigen Chips (SSD)
- jede Zelle hat eine Position/Adresse

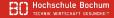

- Datei Dokument1.docx
- Datei Tabelle.xlsx


Dateien speichern auf der Festplatte

Festplatten speichern Bits z.B.

- durch Magnetisierung von winzigen Stellen (Zellen) auf Scheiben
- oder in Zellen von nicht-flüchtigen Chips (SSD)
- jede Zelle hat eine Position/Adresse


Woher wissen wir, wo die Bits von Dokument1.docx liegen?


Dateien speichern auf der Festplatte

Festplatten speichern Bits z.B.

- durch Magnetisierung von winzigen Stellen (Zellen) auf Scheiben
- oder in Zellen von nicht-flüchtigen Chips (SSD)
- jede Zelle hat eine Position/Adresse

- Datei Dokument1.docx
- Datei Tabelle.xlsx
- Inhaltsverzeichnis (FAT)

Dateien speichern auf der Festplatte

Das Dateisystem verwaltet, wo die Bits einer Datei gespeichert sind und wer auf welche Dateien zugreifen kann.

File Allocation Table (FAT):

Datei	Start	Ende
C:\Dok1.docx	392	481
C:\Tabelle.xlsx	879	1537

Wie finde ich Dateien auf meinem Computer?

- Jeder Benutzer hat ein eigenes (Wurzel-) Verzeichnis MacOS: /Users/Benutzername
 Windows: C:\Users\Benutzername
- Verzeichnisse (Ordner) können ineinander liegen
- Ein Pfad verweist auf den genauen Ort der Datei
 - /Users/Benutzername/Desktop/bild.jpg
 - /Users/Benutzername/Documents/buero/abrechnung.doc
- Pfade können relativ sein ./.././Desktop/bild.jpg
- ein Punkt in einem Pfad verweist auf das aktuelle Verzeichnis
- zwei Punkte in einem Pfad verweisen auf das übergeordnete Verzeichnis

- Es können weitere Speichermedien lokal eingebunden werden (auch über USB)
- Bei Defekt des Speichermediums oder Diebstahl sind die Dateien verloren

 → an Sicherung der Dateien denken
- Ransomware hat Zugriff auf die Dateien und kann sie verschlüsseln https://de.wikipedia.org/wiki/Ransomware
 - ightarrow an Sicherung der Dateien denken

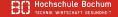
NETZLAUFWERKE

- Netzlaufwerke sind Verzeichnisse, die auf einem anderen Computer liegen
- Sie werden als Laufwerke im eigenen Computer eingebunden Protokolle: NFS, Samba (SMB)
- Sie funktionieren genauso wie lokale Verzeichnisse
- Mehrere Benutzer können sich die Laufwerke teilen
- Sie werden in Unternehmen üblicherweise automatisch gesichert

CLOUD-VERZEICHNISSE

- Dateien liegen auf Web-Servern im Internet
- GoogleDrive, MS OneDrive, Apple iCloud, Sciebo
- Dateien müssen für Bearbeitung mit lokalen Programmen heruntergeladen werden
 - Explizit: Beim Download wird das Zielverzeichnis festgelegt Implizit: Die Datei wird in einem Verzeichnis für temporäre Dateien gespeichert
- Betriebssystem oder spezielle Software synchronisiert lokale Verzeichnisse mit Cloud-Verzeichnissen
- Dienstleister sorgt für Sicherung der Daten
- Unternehmen müssen ggf. sicherstellen, dass die Daten innerhalb der EU gespeichert werden

Codierung von Daten



Wie können wir Informationen im Computer speichern?

- Zahlen
- Texte
- Fotos
- Ton

Digitalisierung: Übertragung von analogen Informationen in digitale Daten!

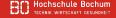
WIE WERDEN DATEN GESPEICHERT

- Binärsystem
- 0 und 1 werden als einzige Ziffern verwendet
- Einfach im Computer speicherbar
 Spannung liegt an ←→ liegt nicht an

Natürliche Zahlen

- Folge von Ziffern
- Jede Ziffer hat abhängig von der Stelle eine Wertigkeit

Natürliche Zahlen


- Folge von Ziffern
- Jede Ziffer hat abhängig von der Stelle eine Wertigkeit
- Dezimalsystem
 - Wert jeder Stelle wächst um Faktor 10
 341 = 3 * 100 + 4 * 10 + 1 * 1
 - Erfordert 10 Ziffern
 - $\rightarrow \textbf{Schwierig mit unterschiedlichen Spannungen im Computer darzustellen}$

Natürliche Zahlen

- Folge von Ziffern
- Jede Ziffer hat abhängig von der Stelle eine Wertigkeit
- Dezimalsystem
 - Wert jeder Stelle wächst um Faktor 10
 341 = 3 * 100 + 4 * 10 + 1 * 1
 - Erfordert 10 Ziffern
 - \rightarrow Schwierig mit unterschiedlichen Spannungen im Computer darzustellen
- Binärsystem
 - Wert jeder Stelle wächst um Faktor 2
 1101 = 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1
 - Erfordert 2 Ziffern

SPEICHERN VON ZAHLEN / BINÄRSYSTEM

- Wieviel Stellen benötigen Binärzahlen?
 - $2^{3.3} = 10 \iff \log_2(10) = 3.3$
 - Es werden 3,3 Binärstellen benötigt, um 10 Zahlen zu speichern
 - Binärzahlen sind also ca. 3,3 mal so lang wie Dezimalzahlen
- Größe des Speicherplatzes limitiert die Größe der Zahlen
 - Z.B. für 2727331 benötigen wir $log_2(2727331) = 21,37$ Stellen
 - 2 Byte (16 Bit): 2¹⁶ = 65536
 - 4 Byte (32 Bit): 2³² = 4294967296

Reelle Zahlen

- Zwischen zwei Zahlen liegen unendlich viele andere Zahlen
- Können nicht einfach "aufgereiht" werden
- Speichern einer natürlichen Zahl, die als o,... interpretiert wird
- Speichern eines Exponenten, der die Verschiebung dieser Zahl um entsprechend viele Stellen angibt.
- Beispiel: 123.456 ← 0.123456 * 1000
- Gespeichert wird 123456 und 3 Stellen nach links verschieben.
- Zahlen können sehr groß bzw. sehr klein werden
- Anzahl der gespeicherten Stellen ist immer gleich

Speichern von Zahlen / Reelle Zahlen

Übliche Codierung für reelle Zahlen: IEEE 754

- Einfache Genauigkeit
 - 7...8 Stellen (im Sinne des Dezimalsystems) werden gespeichert
 - 32 Bit Platzbedarf für die gesamte Zahl
- Doppelte Genauigkeit
 - 15 ... 16 Stellen werden gespeichert
 - 64 Bit Platzbedarf für die gesamte Zahl
- Rundungsfehler bei Berechnungen, wenn die Zahlen unterschiedlich groß sind

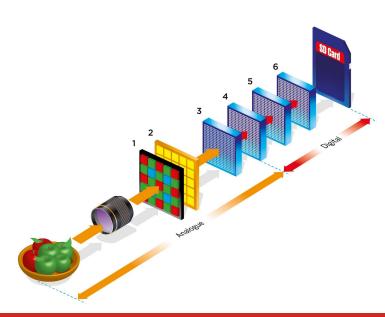
Speichern von Texten

Buchstaben

- Jedem Buchstaben/Zeichen wird eine Zahl zugeordnet
 - A: 65
 - B: 66
 - ...
- Ursprünglich (ASCII): 7 Bit: Platz für 128 Zeichen
- Amerikanischer Zeichensatz (keine Umlaute)
- Zunächst unterschiedliche Ergänzungen des 8. Bits bei verschiedenen Betriebssystemen dadurch verschiedene Codes für Umlaute und Sonderzeichen

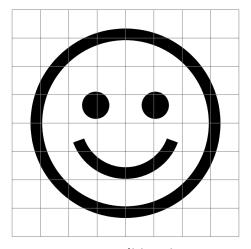
SPEICHERN VON TEXTEN

Umlaute und Sonderzeichen

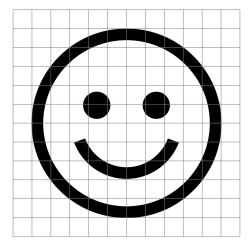

Aktuelle Kodierungen:

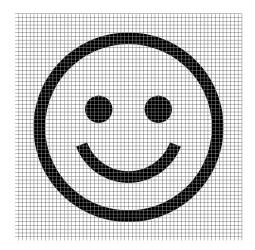
- ISO 8859: Familie von Kodierungen für verschiedene Sprachräume
- UTF-8: Universelle Kodierung

DIGITALE FOTOGRAFIE



WIE WERDEN BILDER DARGESTELLT




8x8 = 64 Bildpunkte

WIE WERDEN BILDER DARGESTELLT

12x12 = 144 Bildpunkte

60x60 = 3600 Bildpunkte

WIE WERDEN BILDER DARGESTELLT

- Die Auflösung kann beliebig erhöht werden
- Der Speicherbedarf wächst mit steigender Genauigkeit
- Typische Auflösungen:
 - Fernseher (SD): 720 x 576 Bildpunkte
 - Fernseher (UHD): 3.840 x 2.160 Bildpunkte
 - Digitalkamera: min. 60 Bildpunkte je cm
 - Monitor: 1.280 x 1.024 bis 1.920 x 1.080 Bildpunkte

FARBEN

Wie kommen Farben in die Bilder?

- Für jedes Pixel wird die Intensität der Grundfarben gespeichert
- Aus diesen wird dann die Farbe gemischt
- RGB
 - Grundfarben: Rot, Grün, Blau
 - Intensitätswerte: 0–255
 - Anzahl der unterschiedlichen Farben: $256^3 = 2^{24} = 16777216$

FARBEN

Wie kommen Farben in die Bilder?

- Für jedes Pixel wird die Intensität der Grundfarben gespeichert
- · Aus diesen wird dann die Farbe gemischt
- RGB
 - Grundfarben: Rot, Grün, Blau
 - Intensitätswerte: 0-255
 - Anzahl der unterschiedlichen Farben: $256^3 = 2^{24} = 16777216$
- Für jede Farbe werden 8 Bit ($2^8 = 256$) benötigt.
- Speicherbedarf ist also 24 mal höher als bei Schwarz/Weiss

FARBEN

Wie kommen Farben in die Bilder?

- Für jedes Pixel wird die Intensität der Grundfarben gespeichert
- · Aus diesen wird dann die Farbe gemischt
- RGB
 - Grundfarben: Rot, Grün, Blau
 - Intensitätswerte: 0-255
 - Anzahl der unterschiedlichen Farben: $256^3 = 2^{24} = 16777216$
- Für jede Farbe werden 8 Bit ($2^8 = 256$) benötigt.
- Speicherbedarf ist also 24 mal höher als bei Schwarz/Weiss
- Speicherbedarf eines UHD-Bildes:

$$3.840 * 2.160 * 24 = 199\,065\,600\,bit = 24\,883\,200\,B = 24\,300\,kB = 23,7\,MB$$

BILDBEARBEITUNG

Bildbearbeitung

- Größes eines UHD-Bildes: 23,7 MB
- Kamera iPhone MAX: 48 MegaPixel (MP)
- 8064 x 6048 Pixel
- 24 Bit pro Pixel = 1,09 GB Daten!

Bildbearbeitungsprogramme

- Bildbearbeitungsprogramme müssen auf alle Pixel zugreifen!
- Bild muss im Arbeitsspeicher liegen!
- (zusätzlich zu allen anderen Dingen, die der Computer im Arbeitsspeicher braucht)

KOMPRIMIERUNG

Warum sind die Bilder auf dem Speichermedium dann doch nicht so groß?

Komprimierung

- Verlustfrei
 - Wiederkehrendes Auftreten von Bildelementen wird optimiert gespeichert
 - Beispiele: PNG, GIF, BMP
 - Nachteile: insbesondere Fotos werden nur begrenzt kleiner
- Verlustbehaftet
 - Bildelemente, die Menschen kaum wahrnehmen, vereinfacht dargestellt
 - Beispiele: JPEG
 - Nachteile: insbesondere grafische Bilder können Verfremdungen / Artefakte erhalten

Worst-Case bei Komprimierung

Original			Komprimiert
110.000	54,60	110.000	54,80
125.000	60,00	125.000	60,00
140.000	65,40	140.000	85,40
155.000	70,80	155.000	70,80
170.000	76,20	170.000	76,20

https://www.dkriesel.com/blog/2013/0802_xerox-workcentres_are_switching_written_numbers_when_scanning

1/ - --- -- -- -- ---

Worst-Case bei Komprimierung

0 ... -: -- 1

Original	Original		
110.000	54,60	110.000	54,80
125.000	60,00	125.000	60,00
140.000	65,40	140.000	85,40
155.000	70,80	155.000	70,80
170.000	76,20	170.000	76,20

https://www.dkriesel.com/blog/2013/0802_xerox-workcentres_are_switching_written_numbers_when_scanning

Werden pixelbasierte Bilder vergrössert, werden die Pixel größer.

Vektorgrafik

- Das Bild wird durch geometrische Figuren beschrieben:
 - Kreis mit Radius 5, Dicke 1 an Position 0, 0
 - gefüllter Kreis mit Radius 1 an Position -1, 1
 - gefüllter Kreis mit Radius 1 an Position 1, 1
 - ...

VEKTORGRAFIK

Vektorgrafiken ...

- können beliebig vergrößert werden, ohne dass Pixel entstehen
- benötigen bei Vergrößerung nicht mehr Speicherplatz

VEKTORGRAFIK

Vektorgrafiken ...

- können beliebig vergrößert werden, ohne dass Pixel entstehen
- benötigen bei Vergrößerung nicht mehr Speicherplatz
- Anwendungen: Diagramme, Firmenlogos, Computerschriften, ...
- Dateiformate: svg, pdf, ...

VEKTORGRAFIK

Vektorgrafiken ...

- können beliebig vergrößert werden, ohne dass Pixel entstehen
- benötigen bei Vergrößerung nicht mehr Speicherplatz
- Anwendungen: Diagramme, Firmenlogos, Computerschriften, ...
- Dateiformate: svg, pdf, ...

https://de.wikipedia.org/wiki/Vektorgrafik

BEWEGTE BILDER

Wie werden aus Bildern Videos?

- Ab ca. 14–16 Bildern pro Sekunde nimmt das Auge diese als bewegte Szene dar.
- Filme bestehen aus 24–48 Bildern pro Sekunde.
- Computerspiele verwenden auch 60–390 Bilder pro Sekunde.

BEWEGTE BILDER

Wie werden aus Bildern Videos?

- Ab ca. 14–16 Bildern pro Sekunde nimmt das Auge diese als bewegte Szene dar.
- Filme bestehen aus 24–48 Bildern pro Sekunde.
- Computerspiele verwenden auch 60–390 Bilder pro Sekunde.
- Jedes Bild benötigt den zuvor genannten Speicherplatz.
- Wieso kann man trotzdem Videos streamen?

BEWEGTE BILDER

Wie werden aus Bildern Videos?

- Ab ca. 14–16 Bildern pro Sekunde nimmt das Auge diese als bewegte Szene dar.
- Filme bestehen aus 24–48 Bildern pro Sekunde.
- Computerspiele verwenden auch 60–390 Bilder pro Sekunde.
- Jedes Bild benötigt den zuvor genannten Speicherplatz.
- Wieso kann man trotzdem Videos streamen?
- Komprimierungsverfahren reduzieren das Datenvolumen!

KOMPRIMIERUNG VON VIDEOS

Wie werden Videos komprimiert?

- Videos sind ja eine Folge von Einzelbildern
- Zwei aufeinanderfolgende Bilder sind zu einem großen Teil identisch
- Es brauchen nur die Änderungen gespeichert bzw. übertragen werden

Zusammenfassung

Alles, was sich zählen oder messen lässt, kann digital gespeichert werden!

- Die Auflösung bestimmt den Speicher- und Rechenbedarf
- Die Verwendung bestimmt die erforderliche Auflösung
- Es gibt Standards, mit denen Informationen digital dargestellt werden