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Lineare Klassifikation
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Wiederholung

Lineare Modelle zur Klassifikation

• Beschreibung von trennenden Hyperebenen durch lineare
Funktionen

• Suche nach bester Ebene/Funktion durch Optimierung
• Optimierung zielt auf Minimierung des Trainingsfehlers ab

Beispiel: Stützvektor-Methode für Klassifikation
• Such Parameter w,b für Ebene
• Optimierung: Maximierung des Abstandes zu beiden Klassen
• Funktioniert gut in hochdimensionalen Räumen
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Lineare Separierbarkeit

Lineare SVM geht von linearer Separierbarkeit aus

sepal_length

se
pa

l_
wi

dt
h

Beste Ebene durch Lösung eines Optimierungsproblems
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Lineare Separierbarkeit

Das SVM Optimierungsproblem

• SVM nutzt Optimierungsproblem um beste Ebene zu finden
• Vorgehen geht von linearer Separierbarkeit aus
• Lösung = Ebene mit maximalem Abstand

Optimierungsproblem mit Nebenbedingungen

argmin
w,b

1
2 ||w||2 mit (wTxi + b)yi ≥ 1

Finde w,b mit
maximalem Abstand

Bedingungen, dass alle Punkte
auf der richtigen Seite liegen
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Lineare Separierbarkeit

Optimierung mit Nebenbedingungen

argmin
w,b

1
2 ||w||2 mit (wTxi + b)yi ≥ 1

lässt sich mit Lagrange-Optimierung formulieren als

L(a,w,b) = 1
2 ||w||2 +

n∑
i=1

ai
[
yi(wTxi + b)− 1

]
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Lineare Separierbarkeit

Lineare SVM geht von linearer Separierbarkeit aus

sepal_length

se
pa

l_
wi

dt
h

• Was ist, wenn es Ausnahmen in den Daten gibt?

• Dann sind einige Bedingungen verletzt ⇒ keine Lösung

Wie kommen wir trotzdem zu einer Lösung?
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Lineare Separierbarkeit

Idee: Strafpunkte für Ausnahmen im Trainingsdatensatz

Alle eingekreisten Punkte
sind Stützvektoren.

p

q

ξ = 0
ξq < 1

ξp > 1

• Punkte im richtigen Bereich bekommen ein ξ = 0 (keine Strafe)
• Punkte auf richtiger Seite im Margin bekommen ein ξ < 1 (leichte Strafe)
• Punkte auf falscher Seite bekommen ein ξ > 1 (große Strafe)
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Lineare Separierbarkeit

Idee: Strafpunkte für Ausnahmen im Trainingsdatensatz
• Erlaubt kleine Fehler im Training
• Lösung = Ebene mit minimalen Strafpunkten

Optimierungsproblem mit Strafpunkten:

argmin
w,b

1
2 ||w||2 + C

n∑
i=1

ξi

• Parameter C gibt an, wie stark die Fehler gewertet werden
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Lineare Separierbarkeit

SVM Modell mit Parameter C in SciKit Learn

# SVC = SupportVectorClassifier
from sklearn.svm import SVC

# Lineare SVM mit C=100
m = SVC(kernel="linear", C=100).

• Parameter C ist wichtigster Einstellknopf für SVMs
• Jede SVM Implementierung enthält Parameter C
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Nicht-lineare Separierbarkeit
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Feature-Raum

Problem: Was ist, wenn Strafpunkte nicht ausreichen?

py

px p

Mögliche Idee:
Betrachte die Abstände zum
Mittelpunkt c = (cx, cy)

d(c,p) =
√

(cx − px)2 + (cy − py)2

Mögliche Idee:
Betrachte die Abstände zum
Mittelpunkt c = (cx, cy)

d(c,p) =
√

(cx − px)2 + (cy − py)2

Und transformiere die Daten in
einen höherdimensionalen Raum
mit neuer Dimension z:

p = (px,py)︸ ︷︷ ︸
∈R2

7→ (px,py,d(c,p))︸ ︷︷ ︸
∈R31 2 3 4 5 2

40

1

2

x
y

z

• Lineare Separierbarkeit in höherdimensionalem Raum
• Transformation in der Theorie meist mit Φ bezeichnet
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Feature-Raum: Kernel-Trick

Problem: Transformation von Daten ist aufwendig!

Idee: SVM braucht höhere Dimension nur im Skalarprodukt!

L(a,w,b) =
1
2 ||w||2 +

n∑
i=1

ai

yi( ⟨w, xi⟩︸ ︷︷ ︸
=:k(w,xi)

+b)− 1


Statt ⟨w, xi⟩ nehmen wir nun ⟨Φ(w),Φ(xi)⟩, d.h. wir berechnen das
Skalarprodukt von w und xi im höherdimensionalen Raum.

k(w, xi) = ⟨Φ(w),Φ(xi)⟩ wird als Kern-Funktion (kernel) bezeichnet.

Data Science 1 - Vorlesung 8 - Klassifikation 13 / 18



Feature-Raum: Kernel-Trick

Idee: Kern-Funktionen ersparen die Transformation

• Transformation lässt sich in Kern-Funktion integrieren
• Kern-Funktion k berechnet Skalarprodukt in

höher-dimensionalen Räumen
• Mit k(v,w) = ⟨v,w⟩ ergibt sich die lineare SVM
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Feature-Raum: Kernel-Trick

Weitere bekannte Kern-Funktionen

• RBF Kern (Radial Basis Functions):

k(v,w) = exp
(
−γ(||v − w||2)

)
, mit freiem Parameter γ

• Polynomielle Kern-Funktion

k(v,w) = (⟨v,w⟩+ r)p , für r ≥ 0,p ≥ 1
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Feature-Raum: Kernel-Trick

Kern-Funktionen natürlich auch in SciKit-Learn

from sklearn.svm import SVC

rbf1 = SVC(gamma=2) # default: RBF Kern

rbf2 = SVC(kernel="rbf", gamma=2)

# polynomieller kern mit Parametern r und p:
poly = SVC(kernel="polynomial", degree=p, coef0=r)

# lineare SVM
lin = SVC(kernel="linear")

Dazu kommt noch Parameter C für die Straf-Kosten!
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SVM Beispiele

Beispiele: SVM Model mit verschiedenen Parametern

Linearer Kern, C=100 Polynomieller Kern,
degree=3, coef0=2, C=100

RBF Kern, gam-
ma=0.1, C=100
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SVM Beispiele

Beispiele: SVM Model mit verschiedenen Parametern

• Die vorherigen Plots wurden auf synthetischen Daten erstellt
• Hilfreich, um selbst zu experimentieren

• Versuchen Sie die Beispiele im Notebook nachzuvollziehen!

[1] xs = [1,2,3]

[ ] Probieren Sie es im Notebook aus!

Notebook: Vorlesung/V8-Klassifikation-SVM-ZweiKreise
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