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Lineare Modelle

Ein einfaches lineares Modell

Die Maximum-Margin Idee (SVM)
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Wir betrachten im Folgenden lineare Modelle zur Klassifikation
Iris Daten mit Klassen setosa und versicolor als Beispiel:

A .

sepal_width

sepal_length

Aufgabe: \Wir suchen eine Funktion f, die fur unbekannten
Datensatz x die zugehorige Klasse vorhersagt!
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Bisher betrachtet: Entscheidungsbaume und nachste Nachbarn
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Entscheidungsbaum k-nachste Nachbarn
Trennung nach einzelnen Trennung in Regionen, nach Di-

Attributen, achsenparallel stanz (Berechnung Uber alle Attribute)
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Idee: Daten mit einer Geraden trennen
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Geradengleichung (Schule) im 2-dimensionalen Raum (R?):

fx)=b-x+c
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Frage 1:

e \Was machen wir, wenn unsere Daten nicht im R? sind,
sondern im R4 (d > 2)?

Frage 2:
o Wie finden wir die richtige “Gerade” / das richtige f?
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Frage 1:
e \Was machen wir, wenn unsere Daten nicht im R? sind,
sondern im R4 (d > 2)?

Frage 2:
o Wie finden wir die richtige “Gerade” / das richtige f?

Vorgehen:
1. Wir brauchen ein Konzept fur hoherdimensionale “Geraden”

2. Wir mussen f in Parameter zerlegen und dann die richtigen
Parameter suchen (= Training)
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Bisher betrachten wir rein numerische Daten

e Daten hatten d Attribute
e Jedes Attribut numerische Werte
e Jedes Beispiel ist Element des d-dimensionalen Raums RY

Beispiel: Iris-Daten enthalten 4 numerische Attribute

sepal_length | sepal_width | petal_length | petal_width 4. 6
4.700 3.200 1300 0.200 3 .1
6 2200 4 1 X3 = 15
4.600 3100 1500 0.200 O. 2
7.600 3 6.600 2100
6300 2900 5600 800 Vektor-Darstellung der
s400 3900 1700 o400 Zeile 3 aus dem Datensatz
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Daten im Vektorraum

Im Folgenden betrachten wir unsere Daten als Teilmenge des
Vektorraums RY.

Hinweis:
Die folgenden Folien enthalten einige Grundlagen
zum Begriff des Vektorraums.

Das sieht zunachst nach viel Mathematik aus, die
meisten Dinge davon benutzen wir unbewusst aber
taglich bzw. seit Beginn des Kurses.
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Was ist ein Vektorraum?

Ein d-dimensionaler Vektorraum V ist eine Menge von Vektoren
Uber einem Korper (z.B. R).

e Vektoren aus V sind d-Tupel mit Werten aus R
e Vektoren konnen addiert werden, zB. im R?

() ()G

o Multiplikation mit Skalaren aus dem Korper, z.B.

2 (7)= (%)
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Vektorraum - Skalarprodulkt

Fur einen Vektorraum V ist das Skalarprodukt zweier Vektoren v, w

definiert als
d

v,w) = v w

i=1

Durch das Skalarprodukt ist eine Norm definiert als

V[ = V{v,v)

Die Norm definiert quasi die Lange eines Vektors.
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Vektorraum - Metrik

Uber die Norm ist eine Metrik (Distanz) zwischen Vektoren
definiert als
d(v,w) = [|v — w||

Mit dem normalen Skalarprodukt ergibt sich fur den Vektorraum
R daraus die euklidische Distanz.

Das haben wir schon bei k-NN implizit benutzt!
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Graphische Anschauung im R?

A

6

Die Norm (=Lange) von w ergibt sich (iber Satz von Pythagoras:

lw|| = /(w,w) =6-6+3 3~ 6.708
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Notationen fir die folgenden Folien:
e [in fetter Kleinbuchstabe x bezeichnet einen Vektor

e X; bezeichnet die i-te Komponente von x
o Fetter GrolRbuchstabe X bezeichnet Menge von Vektoren
o X" bezeichnet den transponierten Vektor von X

Beispiele:

w=| 8|, w=(483), wy=4 w,=8
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Vektoren in Pandas
Ein Pandas Series Objekt stellt einen Vektor dar:

# Erzeuge Vektoren v und w

v = pd.Series([5, 3, 71)
w = pd.Series([4, 8, 31)

# Multiplikation mit Zahl:
w2 = 2 % w

# Skalarproduct <v, w> zweier Vektoren:
sum( v * w )
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Fragen 1: Wie trennen wir Daten im R9?

d=2: Im R2? funktioniert die Gerade:
y=f(x)=w-x+b

Eine Gerade ist ein Untervektorraum der Dimension 1.

d=3: Im R3 konnen wir Ebenen zu Trennung benutzen:

Z=f(X,y)=wi - X+wy-y+b

Eine Ebene ist ein Untervektorraum der Dimension 2.
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Beispiel: Gerade im R? ist ein 1-dimensionaler Unterraum

0o . T r r T >

6] 1 2 3 4 5 6

Gerade ist definiert durch Stltzvektor a = (3) und Normalenvektor

G={(x,y)eR*|1-x+2-y=6}
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Beispiel: Ebene im R3 ist 2-dimensionaler Unterraum
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Ebene ist definiert durch Stutzvektor @ und Normalenvektor w

H = {(xy,2)eR3|0-x+0-y+3-2=15}
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Trennebenen in hoheren Dimensionen

Allgemein ist eine Hyperebene in einem Vektorraum R? ein
Untervektorraum der Dimension d — 1.

Eine Hyperebene lasst sich beschreiben als

f(X) = Wg-Xg+Wg_q-Xg_q+...+Wi-X1+Db
d
= > wx;+b mitbeR xweR (1)

i=1

Die Funktion/Hyperebene f wird also durch die Wahl von w und b
bestimmt.
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Die Summe Z}L w;x; in Formel (1) beschreibt das Skalarprodukt
zweier Vektoren x und w und lafRt sich schreiben als

d
D wix; = (w,x) = w'x =x"w.
i=1
Dabei ist (x,w) die Schreibweise als Skalarprodukt und w’x, bzw.

x"w das Gleiche als Matrizenmultiplikation.

Wir konnen unsere Funktion f somit schreiben als

fX)=w'x+b
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Parametrisierung unseres Modells

Wir haben (bei der Beschrankung auf lineare Modelle) nun eine
Darstellung fur das, was wir lernen wollen:

fX)=w'x+b

w wird auch Gewichtsvektor (daher “w” fir weights), Koeffizienten
oder Parameter genannt.

Der Parameter b ist die konstante Achsenverschiebung und wird
auch intercept genannt.
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Vorbereitung auf’s Lernen

Durch die Darstellung mit w und b konnen wir mit d Parametern
jede lineare Hyperebene wahlen.

Das Training unseres Modells besteht jetzt in der Auswahl der
richtigen Parameter

w = ‘ und b




Ein einfaches lineares Modell
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Wie kommen wir nun zu einer trennenden Ebene?

Beispiel: Einfacher Algorithmus uber Klassenmittelpunkte

Es sei hier ¢ die Menge der Daten der Klasse K und [Xq| die
Anzahl der Punkte in der Menge

Die Mittelpunkte der Klassen setosa und versicolor

1
Csetosa = 7 >, X (2)
‘ [setOSU]’ XEX(setosa]

1

X (3)

xex[versicolor]

Cversicolor
|x[versicolor] |
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Wie kommen wir nun zu einer trennenden Ebene?
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Wie kommen wir nun zu einer trennenden Ebene?

A
S o ° o.
% | Clsetosa] ,* **
- ° o
= LI ] * o [ .
'_,I LI LI . LI
© oo oo ® 00 0 0 oo
§ . . ::‘o .

.o 8" Cpersicolor]

|
sepal_length

(1.) Berechne die Klassen-Mittelpunkte €setosa) UNd €pversicotor]
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Wie kommen wir nun zu einer trennenden Ebene?
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(2.) Bestimme Mittelpunkt m = 2(€persicotor] + Cjsetosal)
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Wie kommen wir nun zu einer trennenden Ebene?
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(3.) StUtzvektor m, Normalenvektor W = Cfsetosq) — M
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Wie kommen wir nun zu einer trennenden Ebene?
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(3.) Ebene mit Stutzvektor m, Normalvektor w:

w(x-m=o0swx—wm=o0
~—~—
~—1.54
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Ergebnis des einfachen Verfahrens:

sepal_width

'
sepal_length

o 2 T . o _0.465
H_{XER | w'x = 1.54},w_< .32, >
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Ergebnis des einfachen Verfahrens:

sepal_width

'
sepal_length

o 2 T . o _0.465
H_{XER | w'x = 1.54},w_< .32, >




FINFACHES LINEARES MODELL Bacnminerety g |

of Applied Sciences  Innd Gaud

Ergebnis des einfachen Verfahrens:

A R Problem: Ebene H erzeugt
schon 2 Fehler auf Trainings-

= daten
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sepal_length

o 2 T . o _0.465
H_{XER | w'x = 1.54},w_< .32, >




FINFACHES LINEARES MODELL sl E30 ]

of Applied Sciences  Innd Gaud

Ergebnis des einfachen Verfahrens:

A R Problem: Ebene H erzeugt

. ® K schon 2 Fehler auf Trainings-
< FEETRR daten
s . O 0.’
o .
i Es gibt zB. Ebene H* die das
i3 besser lOst.
(]
%]

>

sepal_length

B ) Ty [ —0.465
H_{XER | w'x = 1.54},w_< .32, >




Die Maximum-Margin Idee (SVM)
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Das einfache Verfahren klappt nicht gut

e Berechnet w, b ohne Berucksichtigung des Trainingsfehlers
e Bezieht alle Punkte gleich-wichtig in Berechnung von w, b ein
e Ist nur Heuristik um lineare Modelle zu erklaren :-)

Frage: Wie kommen wir zu guten w und b?
e Sind alle Datenpunkte gleich wichtig?
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Betrachten wir die Grenzpunkte der beiden Klassen:
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Betrachten wir die Grenzpunkte der beiden Klassen:

>

sepal_width

sepal_length

e Geraden durch Grenzpunkte erzeugt eine Art Korridor
e Gruner Bereich enthalt die Ebenen, die fehlerfrei klassifizieren

e Fs gibt unendlich viele fehlerfreie Ebenen in diesem Bereich
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Betrachten wir die Grenzpunkte der beiden Klassen:

>

sepal_width

sepal_length

e Geraden durch Grenzpunkte erzeugt eine Art Korridor
e Gruner Bereich enthalt die Ebenen, die fehlerfrei klassifizieren

e Fs gibt unendlich viele fehlerfreie Ebenen in diesem Bereich

Wir wollen eine Ebene auswahlen - welche ist die Beste?
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Idee: Wahle Ebene mit groRtem Abstand zu beiden Klassen

n=_2
Margin = Tiwil

FUhrt zu Optimierungsproblem (Maximierung des Margin)

Statt H\:TH zu maximieren, konnen wir auch ||w|[> minimieren.
(Trick, um ein konvexes Optimierungsproblem zu erhalten)
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Klassifikation mit der Support Vector Machine (SVM)

e Support Vector Machine = Stutzvektor Methode
e Stutzvektoren sind die Punkte, die den Margin definieren

Stutzvekto ren
Stutzve ktoren

o SVYM findet optimale Hyperebene
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SciKit Learn enthalt SVM Classifier

# SVC = Linear Support Vector Classifier
from sklearn.svm import SVC

# Daten Laden, X, y erzeugen

m = SVC(kernel='linear’) # lineares Modell
m.fit(X, y)

_ <« Probieren Sie es im Notebook aus!

Notebook: V7-Lineare-SVM. ipynb
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