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Lineare Modelle

Wir betrachten im Folgenden lineare Modelle zur Klassifikation

Iris Daten mit Klassen setosa und versicolor als Beispiel:

sepal_length

se
pa

l_
wi

dt
h

Aufgabe: Wir suchen eine Funktion f , die für unbekannten
Datensatz x die zugehörige Klasse vorhersagt!
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Lineare Modelle

Bisher betrachtet: Entscheidungsbäume und nächste Nachbarn

sepal_length

se
pa

l_
wi

dt
h

Entscheidungsbaum
Trennung nach einzelnen
Attributen, achsenparallel

sepal_length
se
pa
l_
wi
dt
h

k-nächste Nachbarn
Trennung in Regionen, nach Di-

stanz (Berechnung über alle Attribute)
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Lineare Modelle

Idee: Daten mit einer Geraden trennen

sepal_length

se
pa

l_
wi

dt
h

f

Geradengleichung (Schule) im 2-dimensionalen Raum (R2):

f (x) = b · x + c
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Lineare Modelle

Frage 1:
• Was machen wir, wenn unsere Daten nicht im R2 sind,

sondern im Rd (d > 2)?

Frage 2:
• Wie finden wir die richtige “Gerade” / das richtige f?

Vorgehen:
1. Wir brauchen ein Konzept für höherdimensionale “Geraden”
2. Wir müssen f in Parameter zerlegen und dann die richtigen

Parameter suchen (= Training)

Data Science 1 - Vorlesung 7 - Lineare Modelle 5 / 30



Lineare Modelle

Frage 1:
• Was machen wir, wenn unsere Daten nicht im R2 sind,

sondern im Rd (d > 2)?

Frage 2:
• Wie finden wir die richtige “Gerade” / das richtige f?

Vorgehen:
1. Wir brauchen ein Konzept für höherdimensionale “Geraden”
2. Wir müssen f in Parameter zerlegen und dann die richtigen

Parameter suchen (= Training)

Data Science 1 - Vorlesung 7 - Lineare Modelle 5 / 30



Daten im Vektorraum

Bisher betrachten wir rein numerische Daten

• Daten hatten d Attribute
• Jedes Attribut numerische Werte
• Jedes Beispiel ist Element des d-dimensionalen Raums Rd

Beispiel: Iris-Daten enthalten 4 numerische Attribute

sepal_length sepal_width petal_length petal_width

4.700 3.200 1.300 0.200

6 2.200 4 1

4.600 3.100 1.500 0.200

7.600 3 6.600 2.100

6.300 2.900 5.600 1.800

5.400 3.900 1.700 0.400

x3 =


4.6
3.1
1.5
0.2


Vektor-Darstellung der

Zeile 3 aus dem Datensatz
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Daten im Vektorraum

Daten im Vektorraum

Im Folgenden betrachten wir unsere Daten als Teilmenge des
Vektorraums Rd.

Hinweis:
Die folgenden Folien enthalten einige Grundlagen
zum Begriff des Vektorraums.
Das sieht zunächst nach viel Mathematik aus, die
meisten Dinge davon benutzen wir unbewusst aber
täglich bzw. seit Beginn des Kurses.
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Daten im Vektorraum

Was ist ein Vektorraum?

Ein d-dimensionaler Vektorraum V ist eine Menge von Vektoren
über einem Körper (z.B. R).

• Vektoren aus V sind d-Tupel mit Werten aus R
• Vektoren können addiert werden, z.B. im R2(

−3
2

)
+

(
7
11

)
=

(
4
13

)
• Multiplikation mit Skalaren aus dem Körper, z.B.

2 ·
(
−3
2

)
=

(
−6
4

)
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Daten im Vektorraum

Vektorraum - Skalarprodukt

Für einen Vektorraum V ist das Skalarprodukt zweier Vektoren v,w
definiert als

⟨v,w⟩ =
d∑
i=1

vi · wi

Durch das Skalarprodukt ist eine Norm definiert als

||v|| =
√

⟨v, v⟩

Die Norm definiert quasi die Länge eines Vektors.
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Daten im Vektorraum

Vektorraum - Metrik

Über die Norm ist eine Metrik (Distanz) zwischen Vektoren
definiert als

d(v,w) = ||v − w||

Mit dem normalen Skalarprodukt ergibt sich für den Vektorraum
Rd daraus die euklidische Distanz.

Das haben wir schon bei k-NN implizit benutzt!
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Daten im Vektorraum

Graphische Anschauung im R2

v
w

w − v

6

3

v =

(
2
4

)
, w =

(
6
3

)
w − v =

(
4
−1

)

Die Norm (=Länge) von w ergibt sich über Satz von Pythagoras:

||w|| =
√

⟨w,w⟩ =
√
6 · 6+ 3 · 3 ≈ 6.708
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Daten im Vektorraum

Notationen für die folgenden Folien:
• Ein fetter Kleinbuchstabe x bezeichnet einen Vektor
• xi bezeichnet die i-te Komponente von x
• Fetter Großbuchstabe X bezeichnet Menge von Vektoren
• xT bezeichnet den transponierten Vektor von x

Beispiele:

w =

 4
8
3

 , wT = ( 4 8 3 ), w1 = 4, w2 = 8
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Daten im Vektorraum

Vektoren in Pandas

Ein Pandas Series Objekt stellt einen Vektor dar:
# Erzeuge Vektoren v und w

v = pd.Series([5, 3, 7])
w = pd.Series([4, 8, 3])

# Multiplikation mit Zahl:
w2 = 2 * w

# Skalarproduct <v, w> zweier Vektoren:
sum( v * w )
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Daten im Vektorraum

Fragen 1: Wie trennen wir Daten im Rd?

d=2: Im R2 funktioniert die Gerade:

y = f (x) = w · x + b

Eine Gerade ist ein Untervektorraum der Dimension 1.

d=3: Im R3 können wir Ebenen zu Trennung benutzen:

z = f (x, y) = w1 · x + w2 · y + b

Eine Ebene ist ein Untervektorraum der Dimension 2.
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Vektorraum - Hyperebenen

Beispiel: Gerade im R2 ist ein 1-dimensionaler Unterraum

w

a
G

0 1 2 3 4 5 6
0

1

2

3

4

Gerade ist definiert durch Stützvektor a =
(2
2
)

und Normalenvektor
w =

(1
2
)

G =
{
(x, y) ∈ R2 | 1 · x + 2 · y = 6

}
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Vektorraum - Hyperebenen

Beispiel: Ebene im R3 ist 2-dimensionaler Unterraum

a

w

H

w =

 0
0
3

 , a =

 2
5
5



x

y

z

Ebene ist definiert durch Stützvektor a und Normalenvektor w

H =
{
(x, y, z) ∈ R3 | 0 · x + 0 · y + 3 · z = 15

}
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Hyperebenen - Vektorraum

Trennebenen in höheren Dimensionen

Allgemein ist eine Hyperebene in einem Vektorraum Rd ein
Untervektorraum der Dimension d− 1.

Eine Hyperebene lässt sich beschreiben als

f (x) = wd · xd + wd−1 · xd−1 + . . .+ w1 · x1 + b

=
d∑
i=1

wixi + b mit b ∈ R, x,w ∈ Rd. (1)

Die Funktion/Hyperebene f wird also durch die Wahl von w und b
bestimmt.
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Hyperebenen - Notation

Die Summe
∑d

i=1wixi in Formel (1) beschreibt das Skalarprodukt
zweier Vektoren x und w und läßt sich schreiben als

d∑
i=1

wixi = ⟨w, x⟩ = wTx = xTw.

Dabei ist ⟨x,w⟩ die Schreibweise als Skalarprodukt und wTx, bzw.
xTw das Gleiche als Matrizenmultiplikation.

Wir können unsere Funktion f somit schreiben als

f (x) = wTx + b
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Was haben wir nun gemacht?

Parametrisierung unseres Modells

Wir haben (bei der Beschränkung auf lineare Modelle) nun eine
Darstellung für das, was wir lernen wollen:

f (x) = wTx + b

w wird auch Gewichtsvektor (daher “w” für weights), Koeffizienten
oder Parameter genannt.

Der Parameter b ist die konstante Achsenverschiebung und wird
auch intercept genannt.
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Was haben wir nun gemacht?

Vorbereitung auf’s Lernen

Durch die Darstellung mit w und b können wir mit d Parametern
jede lineare Hyperebene wählen.

Das Training unseres Modells besteht jetzt in der Auswahl der
richtigen Parameter

w =


w1
w2
...
wd

 und b
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Ein einfaches lineares Modell
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Einfaches Lineares Modell

Wie kommen wir nun zu einer trennenden Ebene?

Beispiel: Einfacher Algorithmus über Klassenmittelpunkte

Es sei hier X[K] die Menge der Daten der Klasse K und |X[K]| die
Anzahl der Punkte in der Menge

Die Mittelpunkte der Klassen setosa und versicolor

csetosa =
1

|X[setosa]|
∑

x∈X[setosa]

x (2)

cversicolor =
1

|X[versicolor]|
∑

x∈X[versicolor]

x (3)
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Einfaches Lineares Modell

Wie kommen wir nun zu einer trennenden Ebene?

c[setosa]

c[versicolor]

sepal_length

se
pa

l_
wi

dt
h

mw

m

(1.) Berechne die Klassen-Mittelpunkte c[setosa] und c[versicolor].(2.) Bestimme Mittelpunkt m = 1
2(c[versicolor] + c[setosa])(3.) Stützvektor m, Normalenvektor w = c[setosa] − m(3.) Ebene mit Stützvektor m, Normalvektor w:

wT(x − m) = 0⇔ wTx − wTm︸︷︷︸
≈−1.54

= 0
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Einfaches Lineares Modell

Ergebnis des einfachen Verfahrens:

H

sepal_length

se
pa

l_
wi

dt
h

Problem: Ebene H erzeugt
schon 2 Fehler auf Trainings-
daten.

Es gibt z.B. Ebene H∗, die das
besser löst.

H =
{

x ∈ R2 | wTx = −1.54
}
, w =

(
−0.465
0.324

)
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Die Maximum-Margin Idee (SVM)
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Optimale Hyperebene

Das einfache Verfahren klappt nicht gut

• Berechnet w,b ohne Berücksichtigung des Trainingsfehlers
• Bezieht alle Punkte gleich-wichtig in Berechnung von w,b ein
• Ist nur Heuristik um lineare Modelle zu erklären :-)

Frage: Wie kommen wir zu guten w und b?
• Sind alle Datenpunkte gleich wichtig?
•

Data Science 1 - Vorlesung 7 - Lineare Modelle 26 / 30



Optimale Hyperebene

Betrachten wir die Grenzpunkte der beiden Klassen:

sepal_length

se
pa

l_
wi

dt
h

• Geraden durch Grenzpunkte erzeugt eine Art Korridor
• Grüner Bereich enthält die Ebenen, die fehlerfrei klassifizieren
• Es gibt unendlich viele fehlerfreie Ebenen in diesem Bereich

Wir wollen eine Ebene auswählen - welche ist die Beste?
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Optimale Hyperebene

Idee: Wähle Ebene mit größtem Abstand zu beiden Klassen

Margin = 2
||w||

Führt zu Optimierungsproblem (Maximierung des Margin)

Statt 1
||w|| zu maximieren, können wir auch 1

2 ||w||2 minimieren.
(Trick, um ein konvexes Optimierungsproblem zu erhalten)
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Support Vector Machine

Klassifikation mit der Support Vector Machine (SVM)

• Support Vector Machine = Stützvektor Methode
• Stützvektoren sind die Punkte, die den Margin definieren

Stützvektoren
Stützvektoren

• SVM findet optimale Hyperebene
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SVM mit SciKit Learn

SciKit Learn enthält SVM Classifier

# SVC = Linear Support Vector Classifier
from sklearn.svm import SVC

# Daten Laden, X, y erzeugen

m = SVC(kernel=’linear’) # lineares Modell
m.fit(X, y)

[1] xs = [1,2,3]

[ ] Probieren Sie es im Notebook aus!

Notebook: V7-Lineare-SVM.ipynb
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