DATA SCIENCE 2

VORLESUNG 5 - WARENKORBANALYSE

PROF. DR. CHRISTIAN BOCKERMANN

HOCHSCHULE BOCHUM

WINTERSEMESTER 2024/2025

1 Frequent Itemsets / Patterns

2 Assoziationsregeln

Frequent Itemsets / Patterns

Frequent Itemset Mining sucht häufige Muster

- Gegeben ist Menge **S** von Symbolen (z.B. Artikel)
- Eingabe ist Menge X von Transaktionen (Einkäufe) über S

$$\mathbf{X} = \{ x \mid x \subseteq \mathbf{S} \}$$

Ziel:

- Frage: Welche Symbole tauchen häufig zusammen auf?
- Finde die Muster $p \in \mathcal{P}(\mathbf{S})$ die in \mathbf{X} am häufigsten vorkommen

Artikel		
{ A, B, F }		
{ B, D, E, F }		
{ C, E }		
{ B, E, F }		
{ A, B, E }		

Beispiel: Frequent Itemsets auf Einkäufen

ID	Artikel		
1	{ A, B, F }		
2	{ B, D, E, F }		
3	{ C, E }		
4	{ B, E, F }		
5	{ A, B, E }		

• Artikel **B** = Muster { **B** } taucht in 4/5 der Einkäufe auf

Beispiel: Frequent Itemsets auf Einkäufen

ID	Artikel		
1	{ A, B, F }		
2	{ B, D, E, F }		
3	{ C, E }		
4	{ B, E, F }		
5	{ A, B, E }		

- Artikel B = Muster { B } taucht in 4/5 der Einkäufe auf
- Muster { B, F } taucht in 3/5 aller Einkäufe auf

Beispiel: Frequent Itemsets auf Einkäufen

ID	Artikel		
1	{ A, B, F }		
2	{ B, D, E, F }		
3	{ C, E }		
4	{ B, E, F }		
5	{ A, B, E }		

- Artikel B = Muster { B } taucht in 4/5 der Einkäufe auf
- Muster { B, F } taucht in 3/5 aller Einkäufe auf

Welche Artikel werden häufig zusammen gekauft?

HÄUFIGE MENGEN - TRANSAKTIONSDATENBAN

Transaktionsdatenbank

Transaktionen für Frequent Pattern Mining werden in Transaktionsdatenbank gespeichert:

ID	Α	В	С	D	E	F
1	1	1	0	0	0	1
2	0	1	0	1	1	1
3	0	0	1	0	1	0
4	0	1	0	0	1	1
5	1	1	0	0	1	0

Häufige Mengen - Transaktionsdatenban

Transaktionsdatenbank

Transaktionen für Frequent Pattern Mining werden in Transaktionsdatenbank gespeichert:

ID	Α	В	С	D	E	F
1	1	1	0	0	0	1
2	0	1	0	1	1	1
3	0	0	1	0	1	0
4	0	1	0	0	1	1
5	1	1	0	0	1	0

Transaktion
$$\mathbf{t_1} = \{ A B F \}$$

HÄUFIGE MENGEN - TRANSAKTIONSDATENBAN KONNE

Transaktionen für Frequent Pattern Mining werden in Transaktionsdatenbank gespeichert:

ID	Α	В	С	D	E	F
1	1	1	0	0	0	1
2	0	1	0	1	1	1
3	0	0	1	0	1	0
4	0	1	0	0	1	1
5	1	1	0	0	1	0

Transaktion
$$\mathbf{t_1} = \{ A B F \}$$

 $\mathbf{t_1}$ enthält Muster $\mathbf{p} = \{ A B \}$

Allgemein: Wann ist ein Muster häufig?

Sei $\mathcal D$ eine Datenbank mit Transaktionen. Der support eines Musters $\pmb p$ in einer Datenbank $\mathcal D$ ist

$$\textit{support}(p) = \frac{|\{\; t \in \mathcal{D} \mid p \subseteq t \;\}|}{|\mathcal{D}|}.$$

Allgemein: Wann ist ein Muster häufig?

Sei $\mathcal D$ eine Datenbank mit Transaktionen. Der support eines Musters $\pmb p$ in einer Datenbank $\mathcal D$ ist

$$\textit{support}(p) = \frac{|\{\; t \in \mathcal{D} \mid p \subseteq t \;\}|}{|\mathcal{D}|}.$$

Muster p ist häufig, wenn $support(p) > min_s$, d.h.

- es taucht in *min_s* % aller Transaktionen auf
- Parameter min_s vom Benutzer gewählt
- mins ist der minimale Support

Wie finden wir häufige Muster?

Sei $\mathcal D$ die Datenbank mit Transaktionen $\mathbf t_i$ und jedes $\mathbf t_i \subseteq \mathbf S$ eine Menge von Symbolen aus $\mathbf S = \{s_1, \dots, s_k\}$.

Wie finden wir häufige Muster?

Sei $\mathcal D$ die Datenbank mit Transaktionen $\mathbf t_i$ und jedes $\mathbf t_i \subseteq \mathbf S$ eine Menge von Symbolen aus $\mathbf S = \{s_1, \dots, s_k\}$.

Menge aller möglichen Teilmengen von S ist die Potenzmenge

$$\mathcal{P}(\boldsymbol{S}) = \{\{\}, \{s_1\}, \{s_2\}, \dots, \{s_1, s_2\}, \dots, \{s_1, \dots, s_k\}\}$$

Wie finden wir häufige Muster?

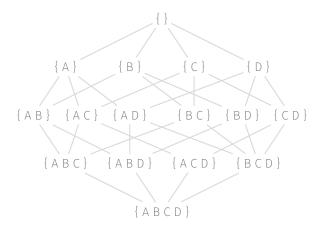
Sei $\mathcal D$ die Datenbank mit Transaktionen $\mathbf t_i$ und jedes $\mathbf t_i \subseteq \mathbf S$ eine Menge von Symbolen aus $\mathbf S = \{s_1, \dots, s_k\}$.

Menge aller möglichen Teilmengen von S ist die Potenzmenge

$$\mathcal{P}(\boldsymbol{S}) = \{\{\}, \{s_1\}, \{s_2\}, \dots, \{s_1, s_2\}, \dots, \{s_1, \dots, s_k\}\}$$

Wir müssen die Häufigkeit aller Teilmengen aus $\mathcal{P}(\mathbf{S})$ zählen!

Potenzmenge als Teilmengen-Verbund



Problem: Größe der Potenzmenge ist exponentiell

$$|\mathcal{P}(\mathbf{S})| = 2^{|\mathbf{S}|}$$

Problem: Größe der Potenzmenge ist exponentiell

$$|\mathcal{P}(\mathbf{S})| = 2^{|\mathbf{S}|}$$

Beispiel:

• Ein Online-Shop hat 10 Produkte: 1024 Teilmengen

Problem: Größe der Potenzmenge ist exponentiell

$$|\mathcal{P}(\mathbf{S})| = 2^{|\mathbf{S}|}$$

Beispiel:

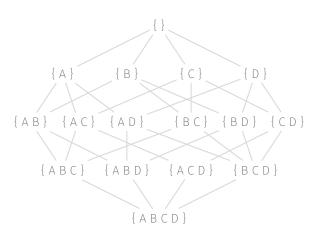
- Ein Online-Shop hat 10 Produkte: 1024 Teilmengen
- Ein Online-Shop hat 100 Produkte:
 1267650600228229401496703205376 Teilmengen

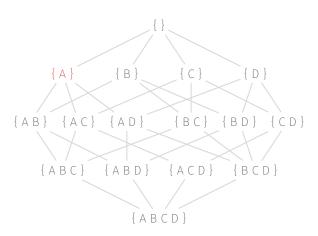
Welcher Shop hat nur 100 Produkte?

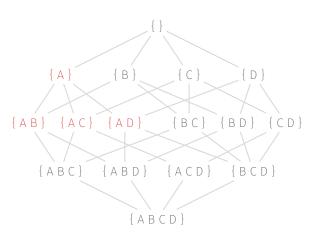
Idee: Häufigkeit ist monoton fallend

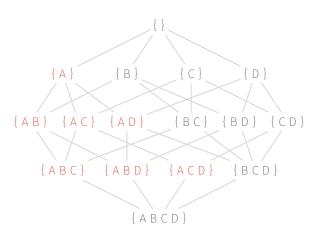
Wenn eine Menge **t** nicht häufig ist, ist jede Menge **p**, die **t** enthält, ebenfalls nicht häufig.

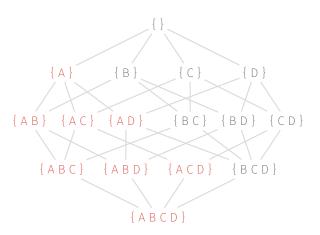
Häufige Mengen - Suchraum











Der Apriori Algorithmus

- 1. Sei k=1. Bilde die k-Elementigen Teilmengen \mathcal{L}_k über \mathbf{S} und zähle ihre Häufigkeit.
- 2. Bilde aus den häufigen k-elementigen Mengen die möglichen (k+1)-Mengen L_{k+1}
- 3. Zähle die Häufigkeit der L_{k+1} -Mengen in ${\mathcal D}$
- 4. Wenn L_{k+1} noch häufige Mengen enthält, setze k:=k+1 und wiederhole ab Schritt 2. andernfalls: Stopp.

Der Apriori Algorithmus

- In SciKit Learn leider nicht enthalten
- Modul mlxtend enthält Apriori Implementierung

Zusätzlich

- One-Hot-Encoder um Transaktionstabelle (o, 1 pro Symbol) zu erzeugen
- Funktioniert auch mit CountVectorizer (vgl. Text-Clustering: DataScience 2, 5. Vorlesung)

Beispiel:

```
import pandas as pd
from mlxtend.frequent_patterns import apriori
# Transaktionen laden (pro Artikel 1 Spalte mit 0/1)
txs = pd.read csv('Kurse/DataScience2/data/
                              transactions.csv')
# Apriori-Algorithmus anwenden:
result = apriori(txs, min_support=0.02,
                 use colnames=True)
# Ergebnis ist wieder ein DataFrame Objekt!
```

Beispiel: (Ergebnis)

	support	itemsets
32	0.05	(antioxydant, juice)
33	0.05	(cottage, cheese)
34	0.05	(drink, energy)
35	0.05	(fat, low)
36	0.05	(yogurt, fat)
37	0.05	(flour, weat)

Alternative zu Apriori-Algorithmus

- Apriori-Algorithmus basiert auf Kandidatengenerierung
- u.U. recht langsam, viele DB-Iterationen
- **FP-Growth** ist alternativer Algorithmus
- Nutzt Kompakte Repräsentation der Datenbank
- nur 2 Iterationen auf DB, danach in-Memory

Häufige Mengen - was nun?

Angenommen, wir haben unsere häufigen Mengen gefunden:

Support	Itemsets
0.53	{ A D }
0.42	{ D F }
0.17	{ A D F }
0.13	{ A C G }

Assoziationsregeln

Assoziationsregeln – Wenn-Dann

Regeln der Art

$$\mathbf{x} o \mathbf{y}$$

wobei ${\bf x}$ und ${\bf y}$ jeweils Mengen von Symbolen aus ${\bf S}$ sind.

Assoziationsregeln - Wenn-Dann

Regeln der Art

$$\boldsymbol{x} \to \boldsymbol{y}$$

wobei **x** und **y** jeweils Mengen von Symbolen aus **S** sind.

Wie häufig kommt die Regel in der Datenbank vor?

Für Assoziationsregeln aus einer Datenbank ${\cal D}$ ist der Support:

$$support(\mathbf{x} \to \mathbf{y}) = \frac{support(\mathbf{x} \cup \mathbf{y})}{|\mathcal{D}|}$$

Beispiel:

Kunden, die Brot und Eier gekauft haben, haben auch Milch gekauft.

Dies läßt sich als Regel formulieren:

```
\{ \text{ Brot, Eier } \} \rightarrow \{ \text{ Milch } \}
```

Beispiel:

Kunden, die Brot und Eier gekauft haben, haben auch Milch gekauft.

Dies läßt sich als Regel formulieren:

$$\{ \text{ Brot, Eier } \} \rightarrow \{ \text{ Milch } \}$$

Der Support der Regel ist:

$$\frac{\text{support}(\{ \text{ Brot, Eier, Milch } \})}{|\mathcal{D}|}$$

Regeln aus häufigen Mengen erzeugen

Regeln werden aus den häufigen Mengen erzeugt. Die Menge

{ A B C }

führt zu den Regeln

Regeln aus häufigen Mengen erzeugen

Regeln werden aus den häufigen Mengen erzeugt. Die Menge

{ A B C }

führt zu den Regeln

Das führt zu sehr vielen Regeln!

Welche sind davon relevant?

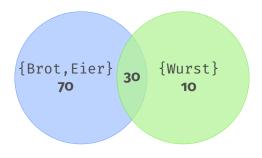
Bewerten von Assoziationsregeln - Konfidenz

Wenn **x** gilt – wie häufig gilt dann auch **y**?

$$\textit{conf}(\mathbf{x} \rightarrow \mathbf{y}) = \frac{\textit{support}(\mathbf{x} \cup \mathbf{y})}{\textit{support}(\mathbf{x})}$$

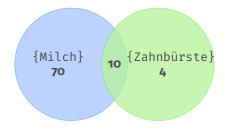
Beispiel: Konfidenz

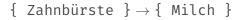
Sei
$$|\mathcal{D}| = 100$$
.

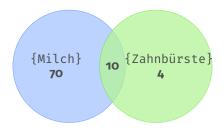


$$\frac{\text{support}(\{ \text{ Brot,Eier,Wurst } \})}{\text{support}(\{ \text{ Brot,Eier } \})} = \frac{0.3}{0.7} \simeq 0.428$$

 $\{ \text{ Zahnbürste } \} \rightarrow \{ \text{ Milch } \}$

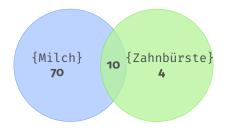




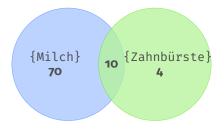


$$\frac{\text{support}(\{ \text{ Zahnbürste, Milch } \})}{\text{support}(\{ \text{ Zahnbürste } \})} = \frac{10}{10+4} \simeq \textbf{0.7}$$

$$conf(\{ Zahnbürste \} \rightarrow \{ Milch \}) = 0.7$$



$$conf(\{ Zahnbürste \} \rightarrow \{ Milch \}) = 0.7$$



Wie aussagekräftig ist die hohe Konfidenz für { Zahnbürste } → { Milch }?

Lift Kriterium

"Das Lift Kriterium gibt die Steigerung der Wahrscheinlichkeit für **y** an, wenn **x** gilt."

$$lift(\mathbf{x} \to \mathbf{y}) = \frac{support(\mathbf{x} \to \mathbf{y})}{support(\mathbf{x}) \cdot support(\mathbf{y})}$$

Interpretation:

$$lift(\mathbf{x} \to \mathbf{y}) > 1 \implies \mathbf{x}, \mathbf{y} \text{ sind positiv korreliert}$$

 $lift(\mathbf{x} \to \mathbf{y}) < 1 \implies \mathbf{x}, \mathbf{y} \text{ sind negativ korreliert}$
 $lift(\mathbf{x} \to \mathbf{y}) = 1 \implies \mathbf{x}, \mathbf{y} \text{ sind unabhängig}$

Assoziationsregeln in Python

- Modul mlxtend ermöglich Generieren von Regeln
- Häufige Mengen vorab mit z.B. Apriori berechnen