DATA SCIENCE 2

VORLESUNG 4 - CLUSTERING

PROF. DR. CHRISTIAN BOCKERMANN

HOCHSCHULE BOCHUM

SOMMERSEMESTER 2025

- 1 Clustering Gruppieren von Daten
- 2 Überblick Clustering-Verfahren
- 3 Der **k**-Means Algorithmus
- 4 Clustering von Dokumenten

Clustering sucht Aufteilung von Daten in ähnliche Gruppen

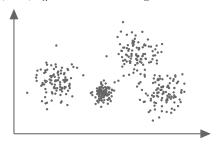
- Datenmenge **X** von Beispielen (keine Klassen gegeben!)
- Parameter **k** zu findender Gruppen
- Abstandsmaß $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- Qualitätsfunktion q

Ziel:

 Abstand innerhalb der Gruppen soll minimiert, Abstand zwischen den Gruppen soll maximiert werden

Beispiel: Clustering

Sei $\mathbf{C} = C_1, \dots, C_k$ eine Aufteilung der Daten X (ein *Clustering*)

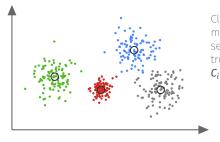


Qualitätsfunktion: (Innere Abstände)

$$q_{inner}(\mathbf{C}) = \sum_{i=1}^k \sum_{x \in C_i} d(x, \overline{\mathbf{c}}_i)$$
 , mit $\overline{\mathbf{c}}_i$ Zentrum von C_i

Beispiel: Clustering

Sei $\mathbf{C} = C_1, \dots, C_k$ eine Aufteilung der Daten X (ein *Clustering*)



Clustering auf Datenpunkten mit k=4. Die schwarzen Kreise markieren jeweils das Zentrum $\overline{\mathbf{c}}_i$ des jeweiligen Cluster \mathbf{c}_i .

Qualitätsfunktion: (Innere Abstände)

$$q_{inner}(\mathbf{C}) = \sum_{i=1}^k \sum_{x \in C_i} d(x, \overline{\mathbf{c}}_i)$$
 , mit $\overline{\mathbf{c}}_i$ Zentrum von C_i

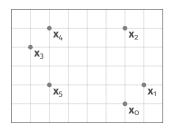
Beispiel: Clustering

• Clustering unter mehreren Qualitätsaspekten:

Überblick Clustering-Verfahren

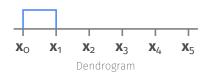
Einordnung von Clustering-Verfahren

- Hierarchisches Clustering, agglomerativ/divisiv
- Iterative Verfahren (z.B. k-Means)
- Dichte-basiertes Clustering (z.B. DBScan)
- Stochastische Verfahren
- Meta-Daten Basierte Verfahren

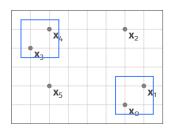


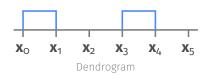
- Jeder Datenpunkt ist anfangs ein Cluster
- In jedem Schritt werden die nächstgelegenen Cluster zusammengefasst
- Erzeugt Hierarchie von Aufteilungen der Daten



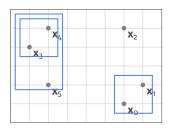


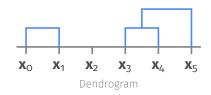
- Jeder Datenpunkt ist anfangs ein Cluster
- In jedem Schritt werden die nächstgelegenen Cluster zusammengefasst
- Erzeugt Hierarchie von Aufteilungen der Daten



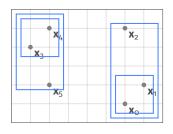


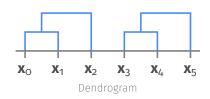
- Jeder Datenpunkt ist anfangs ein Cluster
- In jedem Schritt werden die nächstgelegenen Cluster zusammengefasst
- Erzeugt Hierarchie von Aufteilungen der Daten



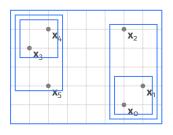


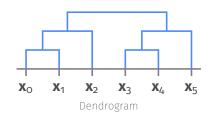
- Jeder Datenpunkt ist anfangs ein Cluster
- In jedem Schritt werden die nächstgelegenen Cluster zusammengefasst
- Erzeugt Hierarchie von Aufteilungen der Daten





- Jeder Datenpunkt ist anfangs ein Cluster
- In jedem Schritt werden die nächstgelegenen Cluster zusammengefasst
- Erzeugt Hierarchie von Aufteilungen der Daten





- Jeder Datenpunkt ist anfangs ein Cluster
- In jedem Schritt werden die nächstgelegenen Cluster zusammengefasst
- Erzeugt Hierarchie von Aufteilungen der Daten

Hierarchisches Clustering - nächstgelegene Cluster

Wir müssen in jedem Schritt die beiden nächstgelegenen Cluster **G** und **H** bestimmen, die zusammengefasst werden.

Hierarchisches Clustering - nächstgelegene Cluster

Wir müssen in jedem Schritt die beiden nächstgelegenen Cluster **G** und **H** bestimmen, die zusammengefasst werden.

Beim single linkage wird der Abstand von **G** und **H** definiert als

$$D(\mathbf{G},\mathbf{H}) = \min_{\mathbf{p} \in G, \mathbf{q} \in \mathbf{H}} d(\mathbf{p},\mathbf{q})$$

⇒ minimaler Abstand zweier Punkte aus **G** und **H**.

Hierarchisches Clustering - nächstgelegene Cluster

Beim complete linkage wird der **maximale** Abstand zweier Punkte aus **G** und **H** als Abstand der Cluster benutzt:

$$D(\mathbf{G}, \mathbf{H}) = \max_{\mathbf{p} \in G, \mathbf{q} \in \mathbf{H}} d(\mathbf{p}, \mathbf{q})$$

Die Cluster G, H mit kleinstem D(G, H) werden zusammengefasst.

Der *k***-Means Algorithmus**

K-MEANS ALGORITHMUS

k-Means Algorithmus

- Distanz-basiertes, iteratives Clustering-Verfahren
- Erzeugt k disjunkte Teilmengen von X
- k ist Benutzer-Parameter
- Distanzfunktion wird auch von Benutzer gewählt

Algorithmus: k-Means

- 1. Wähle k zufällige Clusterpunkte c_1, \ldots, c_k aus X
- 2. Ordne jedes $\mathbf{x} \in \mathbf{X}$ dem nächstgelegenen c_i zu, d.h.

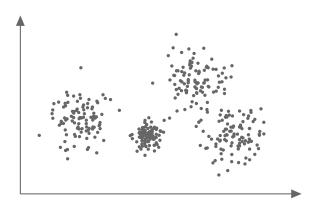
$$\mathbf{C}_i = \{ \mathbf{x} \in \mathbf{X} \mid \mathbf{x} \text{ am nächsten an } \mathbf{c}_i \}$$

3. Berechne neue Clusterpunkte

$$\overline{\mathbf{c}}_i = \frac{1}{|\mathbf{C}_i|} \sum_{\mathbf{x_j} \in \mathbf{C}_i} \mathbf{x_j}$$

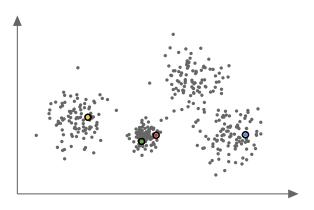
Wenn $\bar{\mathbf{c}}_1, \dots, \bar{\mathbf{c}}_k \simeq \mathbf{c}_1, \dots, \mathbf{c}_k$, dann STOP, sonst springe zu 2. mit den neuen Punkten $\bar{\mathbf{c}}_1, \dots, \bar{\mathbf{c}}_k$

Beispiel: k-Means



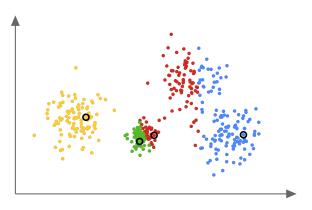
K-MEANS ALGORITHMUS

Beispiel: k-Means



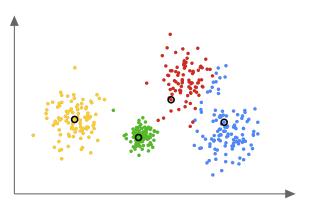
1. Wähle k zufällige Cluster-Mittelpunkte $\mathbf{c}_1, \dots, \mathbf{c}_k$

Beispiel: k-Means



2. Ordne jedem Punkt seinen nächsten Cluster-Mittelpunkt zu

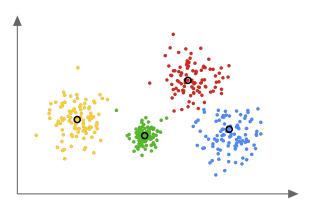
Beispiel: k-Means



3. Für die Cluster neue Mittelpunkte berechnen, Punkte zuordnen

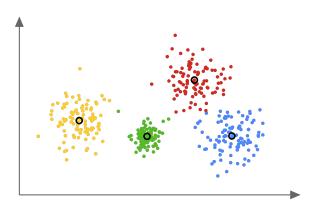
B0

Beispiel: k-Means



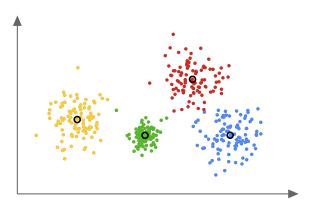
Schritte 2. und 3. wiederholen bis Cluster-Mittelpunkte stabil

Beispiel: k-Means



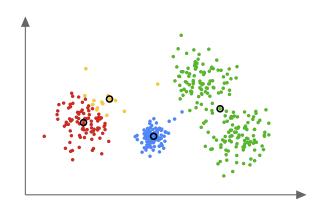
Schritte 2. und 3. wiederholen bis Cluster-Mittelpunkte stabil

Beispiel: k-Means



Schritte 2. und 3. wiederholen bis Cluster-Mittelpunkte stabil

Beispiel: Ergebnis hängt von zufälligen Startpunkten ab



K-MEANS ALGORITHMUS

k-Means Parameter

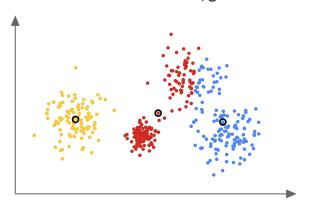
- Unterschiedliche Heuristiken bzgl. der Wahl der Startpunkte
- ggf. mehrfach Starten und Ergebnisse vergleichen

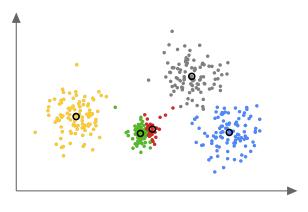
k-Means Parameter

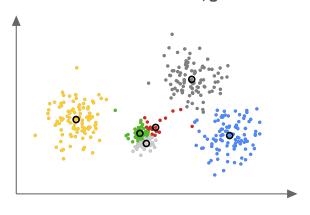
- Unterschiedliche Heuristiken bzgl. der Wahl der Startpunkte
- ggf. mehrfach Starten und Ergebnisse vergleichen

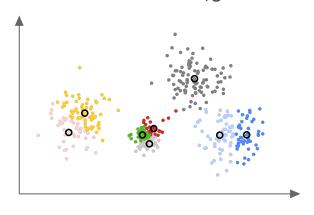
Wie wählen wir Parameter k?

- Keine "So wird's gemacht Lösung"
- Vorwissen über Daten nutzen
- **k** aus der Fragestellung ableiten?









K-MEANS ALGORITHMUS

k-Means Ergebnis

- *k*-Means liefert disjunkte Aufteilung der Daten **X**
- Keine "Interpretation" durch Algorithmus

k-Means Ergebnis

- **k**-Means liefert disjunkte Aufteilung der Daten **X**
- Keine "Interpretation" durch Algorithmus
- Cluster nachfolgend manuell inspizieren?

a1	a2	cluster
3.750	3.500	3
4.075	3.411	5
3.628	3.745	3
3.644	3.581	3

k-Means basiert auf Distanz-Funktion

- Standard: Euklidische Distanz (vgl. Data Science 1, Foliensatz 6, Folie 6+)
- Funktioniert nur auf numerischen Attributen

Daten einlesen, numerische Spalten auswählen

Wähle **number** Spalten mit **select_dtypes(..)**:

```
df = pd.read_csv('data/cluster-data.csv')
# Selektiere alle numerischen Spalten:
X = df.select_dtypes(include=['number'])
```

kMeans in Python

```
from sklearn.cluster import KMeans

# Parameter 'k' = 4
kmeans = KMeans(n_clusters=4)

# Clustering berechnen:
kmeans.fit(X)

# pro Datenpunkt nr des Clusters
clusters = kmeans.predict(X)
```

Clustering Ergebnis ist Liste der Cluster-Nummern:

```
clusters = kmeans.predict(X)

# als Spalte in den DataFrame einfuegen:
df['cluster'] = clusters
```

Bei k = 4 enthält df['cluster'] die Werte $0, \ldots, 3$

Clustering plotten

Berechne für jedes $i = 0, \dots, 3$ eine Farbe zum Plotten

```
# Farb-Zuordnung:
mapping = { 0: 'red', 1: 'blue', 2: 'green', 3: '
                              vellow'}
# Neue Spalte 'color' mit den Farben berechnen:
df['color'] = df['cluster'].replace(mapping)
# Plotten von 'a1', 'a2' mit Farbe 'color'
df.plot.scatter(x='a1', y='a2', c='color')
```


Probieren Sie es im Notebook aus!

Notebook: Kurse/DataScience2/V11-kMeans.ipvnb

Clustering von Dokumenten

Beispiel: Gruppierung von Produkten

A bloomy Eau de by ProfumoInCasa. Parfume for men now vegan!

A intense Eau de Toilette for women and vegan!

Beispiel: Gruppierung von Produkten

A bloomy Eau de Parfume for men by ProfumoInCasa. A earthy Eau de Parfume for men by HappyScent, now vegan!

A intense Eau de Toilette for women by Flavair. Organic and vegan!

Als Text-Spalten im DataFrame:

ID	Produkt-Beschreibung
0	A bloomy Eau de Parfume for men by ProfumoInCasa.
1	A earthy Eau de Parfume for men by HappyScent, now vegan!
2	A intense Eau de Toilette for women by Flavair. Organic and vegan!

Repräsentation von Texten als Bag of Words

- Ein Attribut für jedes Wort
- Ein Dokument ist Vektor mit Anzahl der enthaltenen Worte

Beispiel:

A bloomy Eau de Parfume for women.

А	bloomy	earthy	Eau	de	Parfume	Toilette	for	men	women
1	1	0	1	1	1	0	1	0	1

Repräsentation von Texten als Bag of Words

- Ein Attribut für jedes Wort
- Ein Dokument ist Vektor mit Anzahl der enthaltenen Worte

Beispiel:

A bloomy Eau de Parfume for women.

A earthy Eau de Toilette for men.

A bloomy earthy Eau de Parfume Toilette for

А	bloomy	earthy	Eau	de	Parfume	Toilette	for	men	women
1	1	0	1	1	1	0	1	0	1
1	0	1	1	1	0	1	1	1	0

Wort-Vektoren mit Python/sklearn

```
from sklearn.feature_extraction.text import
                              CountVectorizer
vectorizer = CountVectorizer()
# Lerne Worte und Anzahlen pro Dokument
X = vectorizer.fit(df['text'])
# Die Liste der Woerter:
words = vectorizer.get feature names()
# Erzeuge einen DataFrame mit Wort-Spalten
wf = pd.DataFrame(X.toarray(), columns=words)
```

Bag of Words: Jedes Wort gleich wichtig?

Term Frequency (TF) – Anzahl der Vorkommen eines Wortes (*term*) in Dokument **d**:

$$tf(t,d) = H$$
äufigkeit von t in d

А	bloomy	earthy	Eau	de	Parfume	Toilette	for	men	women
1	1	0	1	1	1	0	1	0	1
1	0	1	1	1	0	1	1	1	0

Bag of Words: Jedes Wort gleich wichtig?

Term Frequency (TF) – Anzahl der Vorkommen eines Wortes (*term*) in Dokument *d*:

$$tf(t,d) = H$$
äufigkeit von t in d

А	bloomy	earthy	Eau	de	Parfume	Toilette	for	men	women
1	1	0	1	1	1	0	1	0	1
1	0	1	1	1	0	1	1	1	0

Idee: Ein Wort, das in nahezu allen Dokumenten vorkommt hat kaum Aussagekraft!

Bag of Words - TF/IDF Darstellung

Sei $\mathcal D$ die Menge aller Texte aus dem Datensatz:

 document frequency – in wie vielen Dokumenten ist das Wort t enthalten?

$$df(t) = |\{d \in \mathcal{D} \mid t \in d\}|$$

• inverse document frequency – logarithmierter Anteil der Dokumente, die **t** enthalten:

$$idf(t) = -\log \frac{df(t)}{|\mathcal{D}|} = \log \frac{|\mathcal{D}|}{df(t)}$$

TF/IDF Darstellung

TF/IDF Wert für Wort **t** in Dokument **d**:

$$tfidf(t,d) = tf(t,d) \cdot idf(t)$$

TF/IDF nimmt Gewichtung der vorherigen Bag of Words Darstellung vor:

А	bloomy	earthy	Eau	de	Parfume	Toilette	for	men	women
0.334	0.470	0	0.334	0.334	0.470	0	0.334	0	0.470
0.334	0	0.470	0.334	0.334	0	0.470	0.334	0.470	0

(Obiger Datensatz besteht nur aus 2 Dokumenten)

TF/IDF mit Python

```
from sklearn.feature extraction.text
       import CountVectorizer, TfidfTransformer
vec = CountVectorizer()
tfidf = TfidfTransformer()
# erst zaehlen, dann tf/idf gewichten:
x = vec.fit transform(df['text'])
x = tfidf.fit transform(x)
words = vec.get feature names()
# DataFrame mit Wort-Spalten nach tf/idf
X = pd.DataFrame(x, columns=words)
```

Clustering von Dokumenten

- Vektor-Darstellung von Dokumenten (TF/IDF)
- Clustering z.B. mit k-Means
- Wie bewerten wir die Cluster?

Clustering von Dokumenten

- Vektor-Darstellung von Dokumenten (TF/IDF)
- Clustering z.B. mit k-Means
- Wie bewerten wir die Cluster?
- Exploration z.B. über WordCloud

WordCloud Erzeugung mit Python

```
from wordcloud import WordCloud
import matplotlib.pyplot as plt
%matplotlib inline
# cluster auswaehlen:
clustero = X[X['cluster'] == 0].sum()
wc = WordCloud()
wc.generate_from_weights( clustero )
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()
```


WordCloud Darstellung für Text-Cluster

