DATA SCIENCE 1 TUTORIALDAY - LEGO SPIKE EDUCATION

PROF. DR. CHRISTIAN BOCKERMANN

HOCHSCHULE BOCHUM

SOMMERSEMESTER 2024

1 Motivation - Lernen mit LEGO?

- 2 LEGO Hardware + Umgebung
- 3 Python + LEGO: spike Modul

4 Aufgaben

LERNEN MIT LEGO?

Hochschule Bochum Bochum University of Applied Sciences

Warum mit LEGO spielen?

LEGO Spike Education Programm

- Praxisorientiertes Lernen
- Haptische Selbsterfahrung
- Fokus u.a. auf MINT Fächer

Warum mit LEGO spielen?

LEGO Spike Education Programm

- Praxisorientiertes Lernen
- Haptische Selbsterfahrung
- Fokus u.a. auf MINT Fächer

LEGO Serious Play

- Moderierte Innovationsprozess (u.a. in Unternehmen)
- Förderung von Kreativität/Innovation durch haptische Modellierung
- Verbessertes Verständnis dargestellter Themen

Motivation durch reale Modelle

- Programmieren lernen mit physikalischen Modellen
- Haptisches Feedback der eigenen Programme

LEGO HUB

LEGO Hub

- Microcontroller
- 100 MHz M4 Prozessor, 320 KB RAM
- 32 MB Flash Speicher für Daten
- mit Bluetooth LE Modul
- MicroPython "Betriebssystem"

Hochschule Bochum Bochum University of Applied Sciences

LEGO HUB

LEGO Hub

- Microcontroller
- 100 MHz M4 Prozessor, 320 KB RAM
- 32 MB Flash Speicher für Daten
- mit Bluetooth LE Modul
- MicroPython "Betriebssystem"

Anschlüsse

- USB zum Laden, Programmieren
- 6 Anschlüsse (Ports) für Motoren, Sensoren, usw.
- 5x5 LED Matrix (Anzeige)

LEGO Spike Legacy App

- Programmierumgebung für LEGO Hub
- USB-Verbindung mit HUB möglich •
- Unterstützt graphische Programmierung + Python
- direktes Auslesen der Sensoren

Bochum University

LEGO SPIKE LEGACY

Hochschule Bochum Bochum University of Applied Sciences

] LagerRobotik : X			
Construction of the Innor'l PrimeHub, LightMatrix, Button, StatusLight, ForceSensor, MotionSensor, Speaker, ColorSensor	. A	Wissensdatenbank	
<pre>2 from math import wait_for_seconds, wait_until, Timer 3 from math import = 4 import hub 5 6 #hub = PrimeHub() 7 #hub.light_matrix.show_inage('MAPPY') 8 9 timer = Timer() 10 11 #button = ForceSensor('D') 12 aufzug.set_default_speed(100) 13 aufzug.set_default_speed(100) 14 gabel = Notor('E') 15 gabel.set_default_speed(20) 15 17 gabelRaus = False</pre>		Erste Schritte	\sim
		Арр	~
		Tasten	\sim
		Farbsensor	\sim
		Abstandssensor	\sim
		Kraftsensor	~
Konsole		Lichtmatrix	~
		Mathematische Funktionen	~
		Bewegungssensor	~

Python + LEGO: spike Modul

Python Modul spike

- Python Modul zum Zugriff auf den Hub
- Funktionen für Hardware (Farbsensor, Motor, usw.)

```
from spike import PrimeHub
# Hub Objekt erzeugen
hub = PrimeHub()
# Pixel in der Mitte anschalten:
hub.light_matrix.set_pixel(3,3, brightness=100)
```

SPIKE MODUL

Hochschule Bochum Bochum University of Applied Sciences

Malen mit der LichtMatrix

```
from spike import PrimeHub
hub = PrimeHub()
for x in range(5):
   for y in range(5):
        if x == y:
            hub.light_matrix.set_pixel(x,y)
```

LEGO MOTOR

Hochschule Bochum Bochum University of Applied Sciences

LEGO Winkelmotor

- Winkelgenauer Motor
- Anschluss an einen der 6 Ports
- Drehen mit Winkel, Geschwindigkeit
- aktuellen Winkel auslesen


```
m = Motor('A')
# Winkel abfragen
winkel = m.get_position()
# Um 90 Grad drehen mit Geschwindigkeit 10
m.run_for_degrees(90, speed=10)
```

LEGO FARBSENSOR

LEGO Farbsensor

- Vordefinierte Farben erkennen
- RGB Farbwerte auslesen

```
senor = ColorSensor('B')
# Farbe als String auslesen
farbe = sensor.get_color()
# Farbe ausgeben
print(farbe)
```


Aufgaben

L1 Verbindung mit Hub herstellen

- Starten Sie das LEGO Spike Legacy Programm
- Verbinden Sie den HUB mit dem PC und schalten Sie ihn ein
- Legen Sie ein neues Projekt an (Python!!)
- Falls der Hub nicht automatisch verbunden wird: klicken Sie auf das *Verbinden* Icon und folgen Sie den Anweisungen

L2: Ein erstes Programm

Legen Sie das folgende Programm in LEGO Spike Legacy an:

```
from spike import Motor
m = Motor('A')
# Motor auf Winkel o fahren
m.run_to_position(o)
# Motor 4 Umdrehungen laufen lassen
m.run_for_rotations(4)
```

Starten Sie das Programm auf dem angeschlossenen Hub über den Start-Button unten rechts in der Spike Legacy Anwendung.

L3: Motor-Winkel auslesen

Benutzen Sie das folgende Programm, um den aktuellen Motor-Winkel auszulesen:

```
from spike import Motor
m = Motor('A')
while True:
   winkel = m.get_position()
   print("Winkel: ", winkel)
```

Starten Sie das Programm und drehen Sie am Motor!

L4: Programm: Motor ausrichten

Mit der Funktion m.run_to_position(winkel) fährt der Motor m zu einer Winkelposition winkel.

Es kann zusätzlich der Parameter speed=X angegeben werden, um die Geschwindigkeit des Motors zu kontrollieren.

- Schreiben Sie ein Programm, dass den Motor nacheinander auf die Winkel 0, 30, 60, 90, 120, 150, 180 und 210 fährt!
- Benutzen Sie als Geschwindigkeit den Wert 20.
- Ändern Sie das Programm so, dass der Motor in 5-Grad Schritten eine komplette Umdrehung macht (also die Winkel O, 5, 10, usw. abfährt)!

L5: Spaß mit Farben

Mit ColorSensor kann auf den Farbsensor zugegriffen werden. Die Methode get_color() liefert einen Farb-Wert als String zurück:

```
farbSensor = ColorSensor('B')
farbe = farbSensor.get_color()
print("Farbe: " + farbe)
```

Starten Sie das Programm mehrfach und legen Sie dabei unterschiedlich farbige LEGO-Steine vor den Farbsensor!

L6: Spaß mit Farben

- Schreiben Sie ein Programm, dass kontinuierlich den Farbsensor ausliest und die erkannten Farben ausgibt!
- Testen Sie das Programm, in dem Sie unterschiedlich farbige LEGO-Steine vor den Farbsensor legen!

L7: Farben und Winkel

- Schreiben Sie ein Programm, das auf unterschiedliche Farben reagiert und in Abhängigkeit der Farbe den Motor auf einen bestimmten Winkel fährt.
- Z.B. bei der Farbe blau, soll der Motor zum Winkel 30 Grad fahren, bei grün zu 60 Grad.