# **DATA SCIENCE**

**VORLESUNG 4 - INTRO** 

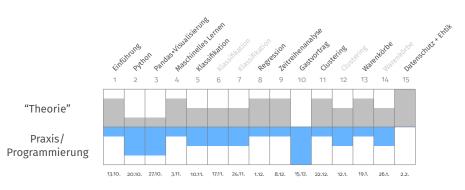
PROF. DR. CHRISTIAN BOCKERMANN

HOCHSCHULE BOCHUM

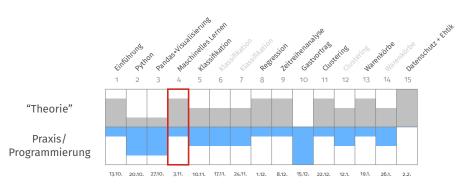
WINTERSEMESTER 2020/2021



Was geschah zuletzt?


#### Was geschah zuletzt?

## Wir sprachen über das Pandas Modul!


- Modul zum Laden + Vorverarbeiten von Daten
- Prototyping: CSV Daten einlesen, Daten Filtern,...
- Indizierung von Tabellen mit .loc[..], .iloc[..] usw.



# Wo sind wir heute (Vorlesung 4)?



# Wo sind wir heute (Vorlesung 4)?



#### Inhalt Vorlesung 4 - Worum geht's?

- Definition der Lernaufgaben des Maschinellen Lernens
- Modell-Training als Optimierungsproblem
- Modell-Validierung durch Train-/Test-Daten
- Einfaches Python Modell Zufall



## Wozu brauchen wir die Lernaufgaben?

- Fokussierung von ML-Ansätzen auf gezielte Aufgaben
- Durchaus Zusammenspiel verschiedener Lernaufgaben in einer Anwendung



## Wozu brauchen wir die Lernaufgaben?

- Fokussierung von ML-Ansätzen auf gezielte Aufgaben
- Durchaus Zusammenspiel verschiedener Lernaufgaben in einer Anwendung

## **Beispiel: Microsoft Kinect / XBox360**



Idee: Spiel-Steuerung durch Gesten/Bewegungen



# Wie kommen wir von der Kamera zur Gestensteuerung?



"Foto" in Graustufen

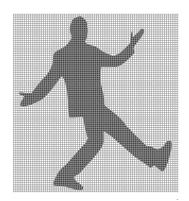



Bild mit Pixelraster

Bill Mockridge

# Wie kommen wir von der Kamera zur Gestensteuerung?



"Foto" in Graustufen

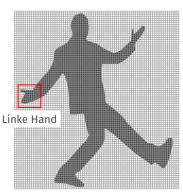



Bild mit Pixelraster

Bill Mockridge

# Wie kommen wir von der Kamera zur Gestensteuerung?



"Foto" in Graustufen

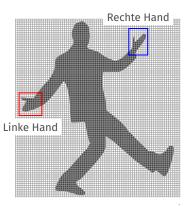



Bild mit Pixelraster

Bill Mockridge



#### Idee 1: Klassifiziere jedes Pixel nach Körperteil

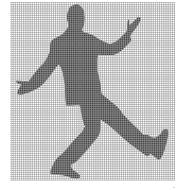



Bild mit Pixelraster

- Klassifikation:  $f: \mathcal{X} \to \mathcal{Y}$
- $\mathcal{X} = \{pixel(x, y, color)\}$
- $\bullet \ \mathcal{Y} = \{ \mathsf{HandLi}, \mathsf{HandRe}, ... \}$

#### Idee 1: Klassifiziere jedes Pixel nach Körperteil

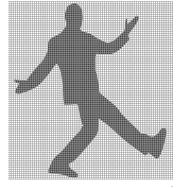



Bild mit Pixelraster

- Klassifikation:  $f: \mathcal{X} \to \mathcal{Y}$
- $\mathcal{X} = \{pixel(x, y, color)\}$
- $\mathcal{Y} = \{\text{HandLi}, \text{HandRe}, ...\}$
- Farbwert color entspricht Tiefenwert im 3D (duale Kamera)

Idee 1: Klassifiziere jedes Pixel nach Körperteil



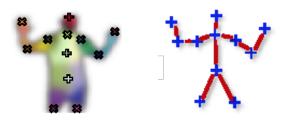
 Modell f trainieren, dass für jedes Pixel die Körperregion vorhersagt

# ANWENDUNG - XBox 360/KINECT

#### Idee 1: Klassifiziere jedes Pixel nach Körperteil



 Modell f trainieren, dass für jedes Pixel die Körperregion vorhersagt


Woher kommen die Trainingsdaten?

Idee 2: Clustering der klassifizierten Körperpixel



• Cluster-Mittelpunkt als Referenzpunkte für Körperteile

### Idee 3: Referenzpunkte als Darstellung zur Gestenerkennung



- Auf vereinfachtem Körpermodell: Tracking von Hand/Fuß/...
- u.U Mustererkennung in Körperteil-Bewegungen

# ANWENDUNG - XBox 360/KINECT



## **Beispiel: XBox 360/Kinect**

- Eingabedaten: Kamera-Bilder mit Tiefen-Information
- Pixel-Klassifikation mit Entscheidungsbäumen (Random Forest)
- Klassifikation in Echtzeit (200 fps auf XBox GPU)

#### Literatur:

- Real-Time Human Pose Recognition in Parts from Single Depth Images, 2011
  J. Shotton, et.al.
  - Microsoft Research Cambridge & Xbox Incubation

## WIE GEHT'S WEITER?

## **Vorschau auf Vorlesung 5:**

- Wir wollen besser vorhersagen als der Zufall
- Entscheidungsbäume als Lernverfahren zur Klassifikation
- Mehr als ein Baum: Random Forest
- Wir lernen das Modul SciKit-Learn kennen