DATA SCIENCE Vorlesung 5 - Intro

PROF. DR. CHRISTIAN BOCKERMANN

HOCHSCHULE BOCHUM

SOMMERSEMESTER 2021

Was geschah zuletzt?

Wir sprachen über das Maschinelle Lernen!

- Grundlagen des Maschinellen Lernens
- Lernaufgaben als Fokussierung auf spezialisierte Tasks
- Formulierung von Modell-Training als Optimierungsaufgabe

Wo sind wir heute (Vorlesung 5)?

Wo sind wir heute (Vorlesung 5)?

Inhalt Vorlesung 5 - Worum geht's?

- Entscheidungsbäume als einfaches Lernverfahren
- Training/Erstellen von Entscheidungsbäumen
- Klassifikationsfehler und confusion matrix
- Modellierung/Training mit SciKit Learn

Wie gehen wir mit Klassifizierungsfehlern um?

- Evaluierung von Klassifizierern über confusion matrix
- Statistische Maße aus Fehlermatrix ableiten

Wie gehen wir mit Klassifizierungsfehlern um?

- Evaluierung von Klassifizierern über confusion matrix
- Statistische Maße aus Fehlermatrix ableiten

Beispiel: COVID-19 Artificial Intelligence Diagnosis...

Datenquelle: Audio-Signal

Sinus-Welle bei 440 Hz

Datenquelle: Audio-Signal

Sinus-Welle bei 440 Hz - Kammerton "c"

BO

Datenquelle: Audio-Signal

Sinus-Welle bei 440 Hz - Kammerton "c"

- Sampling Rate häufig 44.1 kHz, d.h. 44100 Werte 0 \leq x \leq 255
- WAV Dateien enthalten Sampling Werte
- MP3 komprimiert Werte für kleinere Dateien

Audio-Signal für Sprache / Laute

Audio-Signal für Sprache / Laute

Husten-Erkennung

Wie erkennt man nun den "Husten"-Teil?

- 1. Definiere Husten-Muster / Form
- 2. Suche in den Daten (Samples) nach dem Muster

Husten-Erkennung

Wie erkennt man nun den "Husten"-Teil?

- 1. Definiere Husten-Muster / Form
- 2. Suche in den Daten (Samples) nach dem Muster

Und danach?

- Patienten mit Atemwegserkranken haben häufig unterschiedliche Charakteristiken beim Husten/Sprechen
- Stimmband-Eigenschaften ändern sich (z.B. Anfänglicher Luftdruck bei bestimmten Geräuschen)

Husten von Patienten mit unterschiedlichen Symptomen

Aus: Cough sound analysis and objective correlation with spirometry and clinical diagnosis, G. Rudraraju et.al., Informatics in Medicine Unlocked 19 (2020)

Zurück zur COVID-19 Erkennung

<i>Results:</i> When validated with subjects diagnosed using an official test, the model achieves COVID-19 sensitivity of 98.5% with a specificity of 94.2% (AUC: 0.97). For asymptomatic	obtaine whole cost. In 2020, e	dataset. Transfer learning was used to learn biomarker features on larger datasets, previously successfully tested in our Lab on Alzheimer's, which significantly improves the COVID-19 discrimination accuracy of our architecture.
subjects it achieves sensitivity of 100% with a specificity of 83.2%.	fluctua certain June, i unlimi	<i>Results:</i> When validated with subjects diagnosed using an official test, the model achieves COVID-19 sensitivity of 98.5% with a specificity of 94.2% (AUC: 0.97). For asymptomatic subjects it achieves sensitivity of 100% with a specificity of 83.2%.

Aus: COVID-19 Artificial Intelligence Diagnosis using only Cough Recordings, J.Laguarta, F.Hueto and B.Subirana, Engineering in Medicine and Biology (Pre-Print)

Paper gibt an: Sensitivity 98.5% und Specificity 94.2%

Was war damit gleich noch gemeint?

"Wahrheit" y	Klasse Pos	Klasse Neg	
Klasse Pos	True Pos (TP)	False Neg (FN)	TP / (TP + FN
Klasse Neg	False Pos (FP)	True Neg (TN)	TN / (FP + TN
	TP / (TP + FP)	TN / (TN + FN)	

Vorhersage ŷ

Paper gibt an: Sensitivity 98.5% und Specificity 94.2%

Was war damit gleich noch gemeint?

"Wahrheit" y	Klasse Pos	Klasse Neg		
Klasse Pos	True Pos (TP)	False Neg (FN)	TP / (TP + FN)	Sensitivity
Klasse Neg	False Pos (FP)	True Neg (TN)	TN / (FP + TN)	
	TP / (TP + FP)	TN / (TN + FN)		

Vorhersage ŷ

Paper gibt an: Sensitivity 98.5% und Specificity 94.2%

Was war damit gleich noch gemeint?

"Wahrheit" y	Klasse Pos	Klasse Neg		
Klasse Pos	True Pos (TP)	False Neg (FN)	TP / (TP + FN)	Sensitivity
Klasse Neg	False Pos (FP)	True Neg (TN)	TN / (FP + TN)	Specificity
	TP / (TP + FP)	TN / (TN + FN)		

Vorhersage $\hat{\mathbf{y}}$

Paper gibt an: Sensitivity 98.5% und Specificity 94.2%

Was war damit gleich noch gemeint?

Vorhersage ŷ

Warum sind diese beiden so wichtig?

Kombination von Specificity und Sensitivity: AUC

WIE GEHT'S WEITER?

Vorschau auf Vorlesung 5:

- Wir schauen, wie gut wir unseren Classifier trainieren müssen...
- Vektorräume und Distanzmaße was heisst ähnlich?
- *k*-NN als <u>faules</u> Lernverfahren zur Klassifikation
- Noch mehr Spaß mit SciKit-Learn...